|
1 /* |
|
2 motion_control.c - high level interface for issuing motion commands |
|
3 Part of Grbl |
|
4 |
|
5 Copyright (c) 2009-2011 Simen Svale Skogsrud |
|
6 Copyright (c) 2011 Sungeun K. Jeon |
|
7 |
|
8 Grbl is free software: you can redistribute it and/or modify |
|
9 it under the terms of the GNU General Public License as published by |
|
10 the Free Software Foundation, either version 3 of the License, or |
|
11 (at your option) any later version. |
|
12 |
|
13 Grbl is distributed in the hope that it will be useful, |
|
14 but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
16 GNU General Public License for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Grbl. If not, see <http://www.gnu.org/licenses/>. |
|
20 */ |
|
21 |
|
22 #include "Marlin.h" |
|
23 #include "stepper.h" |
|
24 #include "planner.h" |
|
25 |
|
26 // The arc is approximated by generating a huge number of tiny, linear segments. The length of each |
|
27 // segment is configured in settings.mm_per_arc_segment. |
|
28 void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1, |
|
29 uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder) |
|
30 { |
|
31 // int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled(); |
|
32 // plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc |
|
33 float center_axis0 = position[axis_0] + offset[axis_0]; |
|
34 float center_axis1 = position[axis_1] + offset[axis_1]; |
|
35 float linear_travel = target[axis_linear] - position[axis_linear]; |
|
36 float extruder_travel = target[E_AXIS] - position[E_AXIS]; |
|
37 float r_axis0 = -offset[axis_0]; // Radius vector from center to current location |
|
38 float r_axis1 = -offset[axis_1]; |
|
39 float rt_axis0 = target[axis_0] - center_axis0; |
|
40 float rt_axis1 = target[axis_1] - center_axis1; |
|
41 |
|
42 // CCW angle between position and target from circle center. Only one atan2() trig computation required. |
|
43 float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); |
|
44 if (angular_travel < 0) { angular_travel += 2*M_PI; } |
|
45 if (isclockwise) { angular_travel -= 2*M_PI; } |
|
46 |
|
47 float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); |
|
48 if (millimeters_of_travel < 0.001) { return; } |
|
49 uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT); |
|
50 if(segments == 0) segments = 1; |
|
51 |
|
52 /* |
|
53 // Multiply inverse feed_rate to compensate for the fact that this movement is approximated |
|
54 // by a number of discrete segments. The inverse feed_rate should be correct for the sum of |
|
55 // all segments. |
|
56 if (invert_feed_rate) { feed_rate *= segments; } |
|
57 */ |
|
58 float theta_per_segment = angular_travel/segments; |
|
59 float linear_per_segment = linear_travel/segments; |
|
60 float extruder_per_segment = extruder_travel/segments; |
|
61 |
|
62 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, |
|
63 and phi is the angle of rotation. Based on the solution approach by Jens Geisler. |
|
64 r_T = [cos(phi) -sin(phi); |
|
65 sin(phi) cos(phi] * r ; |
|
66 |
|
67 For arc generation, the center of the circle is the axis of rotation and the radius vector is |
|
68 defined from the circle center to the initial position. Each line segment is formed by successive |
|
69 vector rotations. This requires only two cos() and sin() computations to form the rotation |
|
70 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since |
|
71 all double numbers are single precision on the Arduino. (True double precision will not have |
|
72 round off issues for CNC applications.) Single precision error can accumulate to be greater than |
|
73 tool precision in some cases. Therefore, arc path correction is implemented. |
|
74 |
|
75 Small angle approximation may be used to reduce computation overhead further. This approximation |
|
76 holds for everything, but very small circles and large mm_per_arc_segment values. In other words, |
|
77 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large |
|
78 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for |
|
79 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an |
|
80 issue for CNC machines with the single precision Arduino calculations. |
|
81 |
|
82 This approximation also allows mc_arc to immediately insert a line segment into the planner |
|
83 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied |
|
84 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead. |
|
85 This is important when there are successive arc motions. |
|
86 */ |
|
87 // Vector rotation matrix values |
|
88 float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation |
|
89 float sin_T = theta_per_segment; |
|
90 |
|
91 float arc_target[4]; |
|
92 float sin_Ti; |
|
93 float cos_Ti; |
|
94 float r_axisi; |
|
95 uint16_t i; |
|
96 int8_t count = 0; |
|
97 |
|
98 // Initialize the linear axis |
|
99 arc_target[axis_linear] = position[axis_linear]; |
|
100 |
|
101 // Initialize the extruder axis |
|
102 arc_target[E_AXIS] = position[E_AXIS]; |
|
103 |
|
104 for (i = 1; i<segments; i++) { // Increment (segments-1) |
|
105 |
|
106 if (count < N_ARC_CORRECTION) { |
|
107 // Apply vector rotation matrix |
|
108 r_axisi = r_axis0*sin_T + r_axis1*cos_T; |
|
109 r_axis0 = r_axis0*cos_T - r_axis1*sin_T; |
|
110 r_axis1 = r_axisi; |
|
111 count++; |
|
112 } else { |
|
113 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. |
|
114 // Compute exact location by applying transformation matrix from initial radius vector(=-offset). |
|
115 cos_Ti = cos(i*theta_per_segment); |
|
116 sin_Ti = sin(i*theta_per_segment); |
|
117 r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti; |
|
118 r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti; |
|
119 count = 0; |
|
120 } |
|
121 |
|
122 // Update arc_target location |
|
123 arc_target[axis_0] = center_axis0 + r_axis0; |
|
124 arc_target[axis_1] = center_axis1 + r_axis1; |
|
125 arc_target[axis_linear] += linear_per_segment; |
|
126 arc_target[E_AXIS] += extruder_per_segment; |
|
127 |
|
128 if (min_software_endstops) { |
|
129 if (arc_target[X_AXIS] < X_HOME_POS) arc_target[X_AXIS] = X_HOME_POS; |
|
130 if (arc_target[Y_AXIS] < Y_HOME_POS) arc_target[Y_AXIS] = Y_HOME_POS; |
|
131 if (arc_target[Z_AXIS] < Z_HOME_POS) arc_target[Z_AXIS] = Z_HOME_POS; |
|
132 } |
|
133 |
|
134 if (max_software_endstops) { |
|
135 if (arc_target[X_AXIS] > max_length[X_AXIS]) arc_target[X_AXIS] = max_length[X_AXIS]; |
|
136 if (arc_target[Y_AXIS] > max_length[Y_AXIS]) arc_target[Y_AXIS] = max_length[Y_AXIS]; |
|
137 if (arc_target[Z_AXIS] > max_length[Z_AXIS]) arc_target[Z_AXIS] = max_length[Z_AXIS]; |
|
138 } |
|
139 plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder); |
|
140 |
|
141 } |
|
142 // Ensure last segment arrives at target location. |
|
143 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder); |
|
144 |
|
145 // plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled); |
|
146 } |
|
147 |