Sat, 07 Nov 2015 13:23:07 +0100
Initial code from reprappro Marlin repository
0 | 1 | /* |
2 | motion_control.c - high level interface for issuing motion commands | |
3 | Part of Grbl | |
4 | ||
5 | Copyright (c) 2009-2011 Simen Svale Skogsrud | |
6 | Copyright (c) 2011 Sungeun K. Jeon | |
7 | ||
8 | Grbl is free software: you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation, either version 3 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | Grbl is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with Grbl. If not, see <http://www.gnu.org/licenses/>. | |
20 | */ | |
21 | ||
22 | #include "Marlin.h" | |
23 | #include "stepper.h" | |
24 | #include "planner.h" | |
25 | ||
26 | // The arc is approximated by generating a huge number of tiny, linear segments. The length of each | |
27 | // segment is configured in settings.mm_per_arc_segment. | |
28 | void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1, | |
29 | uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder) | |
30 | { | |
31 | // int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled(); | |
32 | // plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc | |
33 | float center_axis0 = position[axis_0] + offset[axis_0]; | |
34 | float center_axis1 = position[axis_1] + offset[axis_1]; | |
35 | float linear_travel = target[axis_linear] - position[axis_linear]; | |
36 | float extruder_travel = target[E_AXIS] - position[E_AXIS]; | |
37 | float r_axis0 = -offset[axis_0]; // Radius vector from center to current location | |
38 | float r_axis1 = -offset[axis_1]; | |
39 | float rt_axis0 = target[axis_0] - center_axis0; | |
40 | float rt_axis1 = target[axis_1] - center_axis1; | |
41 | ||
42 | // CCW angle between position and target from circle center. Only one atan2() trig computation required. | |
43 | float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); | |
44 | if (angular_travel < 0) { angular_travel += 2*M_PI; } | |
45 | if (isclockwise) { angular_travel -= 2*M_PI; } | |
46 | ||
47 | float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); | |
48 | if (millimeters_of_travel < 0.001) { return; } | |
49 | uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT); | |
50 | if(segments == 0) segments = 1; | |
51 | ||
52 | /* | |
53 | // Multiply inverse feed_rate to compensate for the fact that this movement is approximated | |
54 | // by a number of discrete segments. The inverse feed_rate should be correct for the sum of | |
55 | // all segments. | |
56 | if (invert_feed_rate) { feed_rate *= segments; } | |
57 | */ | |
58 | float theta_per_segment = angular_travel/segments; | |
59 | float linear_per_segment = linear_travel/segments; | |
60 | float extruder_per_segment = extruder_travel/segments; | |
61 | ||
62 | /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, | |
63 | and phi is the angle of rotation. Based on the solution approach by Jens Geisler. | |
64 | r_T = [cos(phi) -sin(phi); | |
65 | sin(phi) cos(phi] * r ; | |
66 | ||
67 | For arc generation, the center of the circle is the axis of rotation and the radius vector is | |
68 | defined from the circle center to the initial position. Each line segment is formed by successive | |
69 | vector rotations. This requires only two cos() and sin() computations to form the rotation | |
70 | matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since | |
71 | all double numbers are single precision on the Arduino. (True double precision will not have | |
72 | round off issues for CNC applications.) Single precision error can accumulate to be greater than | |
73 | tool precision in some cases. Therefore, arc path correction is implemented. | |
74 | ||
75 | Small angle approximation may be used to reduce computation overhead further. This approximation | |
76 | holds for everything, but very small circles and large mm_per_arc_segment values. In other words, | |
77 | theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large | |
78 | to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for | |
79 | numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an | |
80 | issue for CNC machines with the single precision Arduino calculations. | |
81 | ||
82 | This approximation also allows mc_arc to immediately insert a line segment into the planner | |
83 | without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied | |
84 | a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead. | |
85 | This is important when there are successive arc motions. | |
86 | */ | |
87 | // Vector rotation matrix values | |
88 | float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation | |
89 | float sin_T = theta_per_segment; | |
90 | ||
91 | float arc_target[4]; | |
92 | float sin_Ti; | |
93 | float cos_Ti; | |
94 | float r_axisi; | |
95 | uint16_t i; | |
96 | int8_t count = 0; | |
97 | ||
98 | // Initialize the linear axis | |
99 | arc_target[axis_linear] = position[axis_linear]; | |
100 | ||
101 | // Initialize the extruder axis | |
102 | arc_target[E_AXIS] = position[E_AXIS]; | |
103 | ||
104 | for (i = 1; i<segments; i++) { // Increment (segments-1) | |
105 | ||
106 | if (count < N_ARC_CORRECTION) { | |
107 | // Apply vector rotation matrix | |
108 | r_axisi = r_axis0*sin_T + r_axis1*cos_T; | |
109 | r_axis0 = r_axis0*cos_T - r_axis1*sin_T; | |
110 | r_axis1 = r_axisi; | |
111 | count++; | |
112 | } else { | |
113 | // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. | |
114 | // Compute exact location by applying transformation matrix from initial radius vector(=-offset). | |
115 | cos_Ti = cos(i*theta_per_segment); | |
116 | sin_Ti = sin(i*theta_per_segment); | |
117 | r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti; | |
118 | r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti; | |
119 | count = 0; | |
120 | } | |
121 | ||
122 | // Update arc_target location | |
123 | arc_target[axis_0] = center_axis0 + r_axis0; | |
124 | arc_target[axis_1] = center_axis1 + r_axis1; | |
125 | arc_target[axis_linear] += linear_per_segment; | |
126 | arc_target[E_AXIS] += extruder_per_segment; | |
127 | ||
128 | if (min_software_endstops) { | |
129 | if (arc_target[X_AXIS] < X_HOME_POS) arc_target[X_AXIS] = X_HOME_POS; | |
130 | if (arc_target[Y_AXIS] < Y_HOME_POS) arc_target[Y_AXIS] = Y_HOME_POS; | |
131 | if (arc_target[Z_AXIS] < Z_HOME_POS) arc_target[Z_AXIS] = Z_HOME_POS; | |
132 | } | |
133 | ||
134 | if (max_software_endstops) { | |
135 | if (arc_target[X_AXIS] > max_length[X_AXIS]) arc_target[X_AXIS] = max_length[X_AXIS]; | |
136 | if (arc_target[Y_AXIS] > max_length[Y_AXIS]) arc_target[Y_AXIS] = max_length[Y_AXIS]; | |
137 | if (arc_target[Z_AXIS] > max_length[Z_AXIS]) arc_target[Z_AXIS] = max_length[Z_AXIS]; | |
138 | } | |
139 | plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder); | |
140 | ||
141 | } | |
142 | // Ensure last segment arrives at target location. | |
143 | plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder); | |
144 | ||
145 | // plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled); | |
146 | } | |
147 |