Wed, 20 Jan 2021 11:37:03 +0100
reimplemented lasercutter changes
# Copyright (C) 2013 -- CJlano < cjlano @ free.fr > # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. ''' This module contains all the geometric classes and functions not directly related to SVG parsing. It can be reused outside the scope of SVG. ''' import math import numbers import operator class Point: def __init__(self, x=None, y=None): '''A Point is defined either by a tuple/list of length 2 or by 2 coordinates >>> Point(1,2) (1.000,2.000) >>> Point((1,2)) (1.000,2.000) >>> Point([1,2]) (1.000,2.000) >>> Point('1', '2') (1.000,2.000) >>> Point(('1', None)) (1.000,0.000) ''' if (isinstance(x, tuple) or isinstance(x, list)) and len(x) == 2: x,y = x # Handle empty parameter(s) which should be interpreted as 0 if x is None: x = 0 if y is None: y = 0 try: self.x = float(x) self.y = float(y) except: raise TypeError("A Point is defined by 2 numbers or a tuple") def __add__(self, other): '''Add 2 points by adding coordinates. Try to convert other to Point if necessary >>> Point(1,2) + Point(3,2) (4.000,4.000) >>> Point(1,2) + (3,2) (4.000,4.000)''' if not isinstance(other, Point): try: other = Point(other) except: return NotImplemented return Point(self.x + other.x, self.y + other.y) def __sub__(self, other): '''Substract two Points. >>> Point(1,2) - Point(3,2) (-2.000,0.000) ''' if not isinstance(other, Point): try: other = Point(other) except: return NotImplemented return Point(self.x - other.x, self.y - other.y) def __mul__(self, other): '''Multiply a Point with a constant. >>> 2 * Point(1,2) (2.000,4.000) >>> Point(1,2) * Point(1,2) #doctest:+IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... TypeError: ''' if not isinstance(other, numbers.Real): return NotImplemented return Point(self.x * other, self.y * other) def __rmul__(self, other): return self.__mul__(other) def __eq__(self, other): '''Test equality >>> Point(1,2) == (1,2) True >>> Point(1,2) == Point(2,1) False ''' if not isinstance(other, Point): try: other = Point(other) except: return NotImplemented return (self.x == other.x) and (self.y == other.y) def __repr__(self): return '(' + format(self.x,'.3f') + ',' + format( self.y,'.3f') + ')' def __str__(self): return self.__repr__(); def coord(self): '''Return the point tuple (x,y)''' return (self.x, self.y) def length(self): '''Vector length, Pythagoras theorem''' return math.sqrt(self.x ** 2 + self.y ** 2) def rot(self, angle): '''Rotate vector [Origin,self] ''' if not isinstance(angle, Angle): try: angle = Angle(angle) except: return NotImplemented x = self.x * angle.cos - self.y * angle.sin y = self.x * angle.sin + self.y * angle.cos return Point(x,y) class Angle: '''Define a trigonometric angle [of a vector] ''' def __init__(self, arg): if isinstance(arg, numbers.Real): # We precompute sin and cos for rotations self.angle = arg self.cos = math.cos(self.angle) self.sin = math.sin(self.angle) elif isinstance(arg, Point): # Point angle is the trigonometric angle of the vector [origin, Point] pt = arg try: self.cos = pt.x/pt.length() self.sin = pt.y/pt.length() except ZeroDivisionError: self.cos = 1 self.sin = 0 self.angle = math.acos(self.cos) if self.sin < 0: self.angle = -self.angle else: raise TypeError("Angle is defined by a number or a Point") def __neg__(self): return Angle(Point(self.cos, -self.sin)) class Segment: '''A segment is an object defined by 2 points''' def __init__(self, start, end): self.start = start self.end = end def __str__(self): return 'Segment from ' + str(self.start) + ' to ' + str(self.end) def segments(self, precision=0): ''' Segments is simply the segment start -> end''' return [self.start, self.end] def length(self): '''Segment length, Pythagoras theorem''' s = self.end - self.start return math.sqrt(s.x ** 2 + s.y ** 2) def pdistance(self, p): '''Perpendicular distance between this Segment and a given Point p''' if not isinstance(p, Point): return NotImplemented if self.start == self.end: # Distance from a Point to another Point is length of a segment return Segment(self.start, p).length() s = self.end - self.start if s.x == 0: # Vertical Segment => pdistance is the difference of abscissa return abs(self.start.x - p.x) else: # That's 2-D perpendicular distance formulae (ref: Wikipedia) slope = s.y/s.x # intercept: Crossing with ordinate y-axis intercept = self.start.y - (slope * self.start.x) return abs(slope * p.x - p.y + intercept) / math.sqrt(slope ** 2 + 1) def bbox(self): xmin = min(self.start.x, self.end.x) xmax = max(self.start.x, self.end.x) ymin = min(self.start.y, self.end.y) ymax = max(self.start.y, self.end.y) return (Point(xmin,ymin),Point(xmax,ymax)) def transform(self, matrix): self.start = matrix * self.start self.end = matrix * self.end def scale(self, ratio): self.start *= ratio self.end *= ratio def translate(self, offset): self.start += offset self.end += offset def rotate(self, angle): self.start = self.start.rot(angle) self.end = self.end.rot(angle) class Bezier: '''Bezier curve class A Bezier curve is defined by its control points Its dimension is equal to the number of control points Note that SVG only support dimension 3 and 4 Bezier curve, respectively Quadratic and Cubic Bezier curve''' def __init__(self, pts): self.pts = list(pts) self.dimension = len(pts) def __str__(self): return 'Bezier' + str(self.dimension) + \ ' : ' + ", ".join([str(x) for x in self.pts]) def control_point(self, n): if n >= self.dimension: raise LookupError('Index is larger than Bezier curve dimension') else: return self.pts[n] def rlength(self): '''Rough Bezier length: length of control point segments''' pts = list(self.pts) l = 0.0 p1 = pts.pop() while pts: p2 = pts.pop() l += Segment(p1, p2).length() p1 = p2 return l def bbox(self): return self.rbbox() def rbbox(self): '''Rough bounding box: return the bounding box (P1,P2) of the Bezier _control_ points''' xmin = min([p.x for p in self.pts]) xmax = max([p.x for p in self.pts]) ymin = min([p.y for p in self.pts]) ymax = max([p.y for p in self.pts]) return (Point(xmin,ymin), Point(xmax,ymax)) def segments(self, precision=0): '''Return a polyline approximation ("segments") of the Bezier curve precision is the minimum significative length of a segment''' segments = [] # n is the number of Bezier points to draw according to precision if precision != 0: n = int(self.rlength() / precision) + 1 else: n = 1000 if n < 10: n = 10 if n > 1000 : n = 1000 for t in range(0, n+1): segments.append(self._bezierN(float(t)/n)) return segments def _bezier1(self, p0, p1, t): '''Bezier curve, one dimension Compute the Point corresponding to a linear Bezier curve between p0 and p1 at "time" t ''' pt = p0 + t * (p1 - p0) return pt def _bezierN(self, t): '''Bezier curve, Nth dimension Compute the point of the Nth dimension Bezier curve at "time" t''' # We reduce the N Bezier control points by computing the linear Bezier # point of each control point segment, creating N-1 control points # until we reach one single point res = list(self.pts) # We store the resulting Bezier points in res[], recursively for n in range(self.dimension, 1, -1): # For each control point of nth dimension, # compute linear Bezier point a t for i in range(0,n-1): res[i] = self._bezier1(res[i], res[i+1], t) return res[0] def transform(self, matrix): self.pts = [matrix * x for x in self.pts] def scale(self, ratio): self.pts = [x * ratio for x in self.pts] def translate(self, offset): self.pts = [x + offset for x in self.pts] def rotate(self, angle): self.pts = [x.rot(angle) for x in self.pts] class MoveTo: def __init__(self, dest): self.dest = dest def bbox(self): return (self.dest, self.dest) def transform(self, matrix): self.dest = matrix * self.dest def scale(self, ratio): self.dest *= ratio def translate(self, offset): self.dest += offset def rotate(self, angle): self.dest = self.dest.rot(angle) def simplify_segment(segment, epsilon): '''Ramer-Douglas-Peucker algorithm''' if len(segment) < 3 or epsilon <= 0: return segment[:] l = Segment(segment[0], segment[-1]) # Longest segment # Find the furthest point from the segment index, maxDist = max([(i, l.pdistance(p)) for i,p in enumerate(segment)], key=operator.itemgetter(1)) if maxDist > epsilon: # Recursively call with segment splited in 2 on its furthest point r1 = simplify_segment(segment[:index+1], epsilon) r2 = simplify_segment(segment[index:], epsilon) # Remove redundant 'middle' Point return r1[:-1] + r2 else: return [segment[0], segment[-1]]