printrun-src/printrun/svg2gcode/cubicsuperpath.py

changeset 16
36d478bde840
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/printrun-src/printrun/svg2gcode/cubicsuperpath.py	Fri Jun 03 09:42:44 2016 +0200
@@ -0,0 +1,169 @@
+#!/usr/bin/env python
+"""
+cubicsuperpath.py
+
+Copyright (C) 2005 Aaron Spike, aaron@ekips.org
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+
+"""
+import simplepath 
+from math import *
+
+def matprod(mlist):
+    prod=mlist[0]
+    for m in mlist[1:]:
+        a00=prod[0][0]*m[0][0]+prod[0][1]*m[1][0]
+        a01=prod[0][0]*m[0][1]+prod[0][1]*m[1][1]
+        a10=prod[1][0]*m[0][0]+prod[1][1]*m[1][0]
+        a11=prod[1][0]*m[0][1]+prod[1][1]*m[1][1]
+        prod=[[a00,a01],[a10,a11]]
+    return prod
+def rotmat(teta):
+    return [[cos(teta),-sin(teta)],[sin(teta),cos(teta)]]
+def applymat(mat, pt):
+    x=mat[0][0]*pt[0]+mat[0][1]*pt[1]
+    y=mat[1][0]*pt[0]+mat[1][1]*pt[1]
+    pt[0]=x
+    pt[1]=y
+def norm(pt):
+    return sqrt(pt[0]*pt[0]+pt[1]*pt[1])
+
+def ArcToPath(p1,params):
+    A=p1[:]
+    rx,ry,teta,longflag,sweepflag,x2,y2=params[:]
+    teta = teta*pi/180.0
+    B=[x2,y2]
+    if rx==0 or ry==0:
+        return([[A,A,A],[B,B,B]])
+    mat=matprod((rotmat(teta),[[1/rx,0],[0,1/ry]],rotmat(-teta)))
+    applymat(mat, A)
+    applymat(mat, B)
+    k=[-(B[1]-A[1]),B[0]-A[0]]
+    d=k[0]*k[0]+k[1]*k[1]
+    k[0]/=sqrt(d)
+    k[1]/=sqrt(d)
+    d=sqrt(max(0,1-d/4))
+    if longflag==sweepflag:
+        d*=-1
+    O=[(B[0]+A[0])/2+d*k[0],(B[1]+A[1])/2+d*k[1]]
+    OA=[A[0]-O[0],A[1]-O[1]]
+    OB=[B[0]-O[0],B[1]-O[1]]
+    start=acos(OA[0]/norm(OA))
+    if OA[1]<0:
+        start*=-1
+    end=acos(OB[0]/norm(OB))
+    if OB[1]<0:
+        end*=-1
+
+    if sweepflag and start>end:
+        end +=2*pi
+    if (not sweepflag) and start<end:
+        end -=2*pi
+
+    NbSectors=int(abs(start-end)*2/pi)+1
+    dTeta=(end-start)/NbSectors
+    #v=dTeta*2/pi*0.552
+    #v=dTeta*2/pi*4*(sqrt(2)-1)/3
+    v = 4*tan(dTeta/4)/3
+    #if not sweepflag:
+    #    v*=-1
+    p=[]
+    for i in range(0,NbSectors+1,1):
+        angle=start+i*dTeta
+        v1=[O[0]+cos(angle)-(-v)*sin(angle),O[1]+sin(angle)+(-v)*cos(angle)]
+        pt=[O[0]+cos(angle)                ,O[1]+sin(angle)                ]
+        v2=[O[0]+cos(angle)-  v *sin(angle),O[1]+sin(angle)+  v *cos(angle)]
+        p.append([v1,pt,v2])
+    p[ 0][0]=p[ 0][1][:]
+    p[-1][2]=p[-1][1][:]
+
+    mat=matprod((rotmat(teta),[[rx,0],[0,ry]],rotmat(-teta)))
+    for pts in p:
+        applymat(mat, pts[0])
+        applymat(mat, pts[1])
+        applymat(mat, pts[2])
+    return(p)
+    
+def CubicSuperPath(simplepath):
+    csp = []
+    subpath = -1
+    subpathstart = []
+    last = []
+    lastctrl = []
+    for s in simplepath:
+        cmd, params = s        
+        if cmd == 'M':
+            if last:
+                csp[subpath].append([lastctrl[:],last[:],last[:]])
+            subpath += 1
+            csp.append([])
+            subpathstart =  params[:]
+            last = params[:]
+            lastctrl = params[:]
+        elif cmd == 'L':
+            csp[subpath].append([lastctrl[:],last[:],last[:]])
+            last = params[:]
+            lastctrl = params[:]
+        elif cmd == 'C':
+            csp[subpath].append([lastctrl[:],last[:],params[:2]])
+            last = params[-2:]
+            lastctrl = params[2:4]
+        elif cmd == 'Q':
+            q0=last[:]
+            q1=params[0:2]
+            q2=params[2:4]
+            x0=     q0[0]
+            x1=1./3*q0[0]+2./3*q1[0]
+            x2=           2./3*q1[0]+1./3*q2[0]
+            x3=                           q2[0]
+            y0=     q0[1]
+            y1=1./3*q0[1]+2./3*q1[1]
+            y2=           2./3*q1[1]+1./3*q2[1]
+            y3=                           q2[1]
+            csp[subpath].append([lastctrl[:],[x0,y0],[x1,y1]])
+            last = [x3,y3]
+            lastctrl = [x2,y2]
+        elif cmd == 'A':
+            arcp=ArcToPath(last[:],params[:])
+            arcp[ 0][0]=lastctrl[:]
+            last=arcp[-1][1]
+            lastctrl = arcp[-1][0]
+            csp[subpath]+=arcp[:-1]
+        elif cmd == 'Z':
+            csp[subpath].append([lastctrl[:],last[:],last[:]])
+            last = subpathstart[:]
+            lastctrl = subpathstart[:]
+    #append final superpoint
+    csp[subpath].append([lastctrl[:],last[:],last[:]])
+    return csp    
+
+def unCubicSuperPath(csp):
+    a = []
+    for subpath in csp:
+        if subpath:
+            a.append(['M',subpath[0][1][:]])
+            for i in range(1,len(subpath)):
+                a.append(['C',subpath[i-1][2][:] + subpath[i][0][:] + subpath[i][1][:]])
+    return a
+
+def parsePath(d):
+    return CubicSuperPath(simplepath.parsePath(d))
+
+def formatPath(p):
+    return simplepath.formatPath(unCubicSuperPath(p))
+
+
+# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 fileencoding=utf-8 textwidth=99

mercurial