diff -r 0bbb006204fc -r 36d478bde840 printrun-src/printrun/svg2gcode/cubicsuperpath.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/printrun-src/printrun/svg2gcode/cubicsuperpath.py Fri Jun 03 09:42:44 2016 +0200 @@ -0,0 +1,169 @@ +#!/usr/bin/env python +""" +cubicsuperpath.py + +Copyright (C) 2005 Aaron Spike, aaron@ekips.org + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + +""" +import simplepath +from math import * + +def matprod(mlist): + prod=mlist[0] + for m in mlist[1:]: + a00=prod[0][0]*m[0][0]+prod[0][1]*m[1][0] + a01=prod[0][0]*m[0][1]+prod[0][1]*m[1][1] + a10=prod[1][0]*m[0][0]+prod[1][1]*m[1][0] + a11=prod[1][0]*m[0][1]+prod[1][1]*m[1][1] + prod=[[a00,a01],[a10,a11]] + return prod +def rotmat(teta): + return [[cos(teta),-sin(teta)],[sin(teta),cos(teta)]] +def applymat(mat, pt): + x=mat[0][0]*pt[0]+mat[0][1]*pt[1] + y=mat[1][0]*pt[0]+mat[1][1]*pt[1] + pt[0]=x + pt[1]=y +def norm(pt): + return sqrt(pt[0]*pt[0]+pt[1]*pt[1]) + +def ArcToPath(p1,params): + A=p1[:] + rx,ry,teta,longflag,sweepflag,x2,y2=params[:] + teta = teta*pi/180.0 + B=[x2,y2] + if rx==0 or ry==0: + return([[A,A,A],[B,B,B]]) + mat=matprod((rotmat(teta),[[1/rx,0],[0,1/ry]],rotmat(-teta))) + applymat(mat, A) + applymat(mat, B) + k=[-(B[1]-A[1]),B[0]-A[0]] + d=k[0]*k[0]+k[1]*k[1] + k[0]/=sqrt(d) + k[1]/=sqrt(d) + d=sqrt(max(0,1-d/4)) + if longflag==sweepflag: + d*=-1 + O=[(B[0]+A[0])/2+d*k[0],(B[1]+A[1])/2+d*k[1]] + OA=[A[0]-O[0],A[1]-O[1]] + OB=[B[0]-O[0],B[1]-O[1]] + start=acos(OA[0]/norm(OA)) + if OA[1]<0: + start*=-1 + end=acos(OB[0]/norm(OB)) + if OB[1]<0: + end*=-1 + + if sweepflag and start>end: + end +=2*pi + if (not sweepflag) and start