Fri, 17 Nov 2017 10:13:31 +0100
proper configuration, homing and planner optimization
/* * MatrixMath.cpp Library for MatrixMath * * Created by Charlie Matlack on 12/18/10. * Modified from code by RobH45345 on Arduino Forums, taken from unknown source. * MatrixMath.cpp */ #include "Marlin.h" #include "MatrixMath.h" #define NR_END 1 MatrixMath::MatrixMath() { } // Matrix Printing Routine // Uses tabs to separate numbers under assumption printed float width won't cause problems void MatrixMath::MatrixPrint(float* A, int m, int n, String label){ // A = input matrix (m x n) int i,j; SERIAL_ECHOLN(' '); SERIAL_ECHOLN(label); for (i=0; i<m; i++){ for (j=0;j<n;j++){ serialPrintFloat(A[n*i+j]); SERIAL_ECHO("\t"); } SERIAL_ECHOLN(' '); } } void MatrixMath::MatrixCopy(float* A, int n, int m, float* B) { int i, j, k; for (i=0;i<m;i++) for(j=0;j<n;j++) { B[n*i+j] = A[n*i+j]; } } //Matrix Multiplication Routine // C = A*B void MatrixMath::MatrixMult(float* A, float* B, int m, int p, int n, float* C) { // A = input matrix (m x p) // B = input matrix (p x n) // m = number of rows in A // p = number of columns in A = number of rows in B // n = number of columns in B // C = output matrix = A*B (m x n) int i, j, k; for (i=0;i<m;i++) for(j=0;j<n;j++) { C[n*i+j]=0; for (k=0;k<p;k++) C[n*i+j]= C[n*i+j]+A[p*i+k]*B[n*k+j]; } } //Matrix Addition Routine void MatrixMath::MatrixAdd(float* A, float* B, int m, int n, float* C) { // A = input matrix (m x n) // B = input matrix (m x n) // m = number of rows in A = number of rows in B // n = number of columns in A = number of columns in B // C = output matrix = A+B (m x n) int i, j; for (i=0;i<m;i++) for(j=0;j<n;j++) C[n*i+j]=A[n*i+j]+B[n*i+j]; } //Matrix Subtraction Routine void MatrixMath::MatrixSubtract(float* A, float* B, int m, int n, float* C) { // A = input matrix (m x n) // B = input matrix (m x n) // m = number of rows in A = number of rows in B // n = number of columns in A = number of columns in B // C = output matrix = A-B (m x n) int i, j; for (i=0;i<m;i++) for(j=0;j<n;j++) C[n*i+j]=A[n*i+j]-B[n*i+j]; } //Matrix Transpose Routine void MatrixMath::MatrixTranspose(float* A, int m, int n, float* C) { // A = input matrix (m x n) // m = number of rows in A // n = number of columns in A // C = output matrix = the transpose of A (n x m) int i, j; for (i=0;i<m;i++) for(j=0;j<n;j++) C[m*j+i]=A[n*i+j]; } //Matrix Inversion Routine // * This function inverts a matrix based on the Gauss Jordan method. // * Specifically, it uses partial pivoting to improve numeric stability. // * The algorithm is drawn from those presented in // NUMERICAL RECIPES: The Art of Scientific Computing. // * The function returns 1 on success, 0 on failure. // * NOTE: The argument is ALSO the result matrix, meaning the input matrix is REPLACED int MatrixMath::MatrixInvert(float* A, int n) { // A = input matrix AND result matrix // n = number of rows = number of columns in A (n x n) int pivrow; // keeps track of current pivot row int k,i,j; // k: overall index along diagonal; i: row index; j: col index int pivrows[n]; // keeps track of rows swaps to undo at end float tmp; // used for finding max value and making column swaps for (k = 0; k < n; k++) { // find pivot row, the row with biggest entry in current column tmp = 0; for (i = k; i < n; i++) { if (abs(A[i*n+k]) >= tmp) // 'Avoid using other functions inside abs()?' { tmp = abs(A[i*n+k]); pivrow = i; } } // check for singular matrix if (A[pivrow*n+k] == 0.0f) { SERIAL_ECHOLNPGM("Inversion failed due to singular matrix"); return 0; } // Execute pivot (row swap) if needed if (pivrow != k) { // swap row k with pivrow for (j = 0; j < n; j++) { tmp = A[k*n+j]; A[k*n+j] = A[pivrow*n+j]; A[pivrow*n+j] = tmp; } } pivrows[k] = pivrow; // record row swap (even if no swap happened) tmp = 1.0f/A[k*n+k]; // invert pivot element A[k*n+k] = 1.0f; // This element of input matrix becomes result matrix // Perform row reduction (divide every element by pivot) for (j = 0; j < n; j++) { A[k*n+j] = A[k*n+j]*tmp; } // Now eliminate all other entries in this column for (i = 0; i < n; i++) { if (i != k) { tmp = A[i*n+k]; A[i*n+k] = 0.0f; // The other place where in matrix becomes result mat for (j = 0; j < n; j++) { A[i*n+j] = A[i*n+j] - A[k*n+j]*tmp; } } } } // Done, now need to undo pivot row swaps by doing column swaps in reverse order for (k = n-1; k >= 0; k--) { if (pivrows[k] != k) { for (i = 0; i < n; i++) { tmp = A[i*n+k]; A[i*n+k] = A[i*n+pivrows[k]]; A[i*n+pivrows[k]] = tmp; } } } return 1; } void MatrixMath::MatrixIdentity(float* A, int m, int n) { int i, j; for (i=0;i<m;i++) for(j=0;j<n;j++) A[n*i+j]=i==j?1:0; } MatrixMath matrixMaths; //instance