--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/temperature.cpp Sat Nov 07 13:23:07 2015 +0100 @@ -0,0 +1,733 @@ +/* + temperature.c - temperature control + Part of Marlin + + Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +/* + This firmware is a mashup between Sprinter and grbl. + (https://github.com/kliment/Sprinter) + (https://github.com/simen/grbl/tree) + + It has preliminary support for Matthew Roberts advance algorithm + http://reprap.org/pipermail/reprap-dev/2011-May/003323.html + + */ + + +#include "Marlin.h" +#include "ultralcd.h" +#include "temperature.h" + +//=========================================================================== +//=============================public variables============================ +//=========================================================================== +int target_raw[EXTRUDERS_T] = { 0 }; +int target_raw_bed = 0; + +int current_raw[EXTRUDERS_T] = { 0 }; +int current_raw_bed = 0; + +int b_beta = BED_BETA; +int b_resistor = BED_RS; +long b_thermistor = BED_NTC; +float b_inf = BED_R_INF; + +int n_beta = E_BETA; +int n_resistor = E_RS; +long n_thermistor = E_NTC; +float n_inf = E_R_INF; + +#ifdef PIDTEMP + // used external + float pid_setpoint[EXTRUDERS_T] = { 0.0 }; + + float Kp=DEFAULT_Kp; + float Ki=DEFAULT_Ki; + int Ki_Max=PID_INTEGRAL_DRIVE_MAX; + float Kd=DEFAULT_Kd; + +#endif //PIDTEMP + + +//=========================================================================== +//=============================private variables============================ +//=========================================================================== +static volatile bool temp_meas_ready = false; + +static unsigned long previous_millis_bed_heater; +//static unsigned long previous_millis_heater; + +#ifdef PIDTEMP + //static cannot be external: + static float temp_iState[EXTRUDERS_T] = { 0 }; + static float temp_dState[EXTRUDERS_T] = { 0 }; + static float pTerm[EXTRUDERS_T]; + static float iTerm[EXTRUDERS_T]; + static float dTerm[EXTRUDERS_T]; + //int output; + static float pid_error[EXTRUDERS_T]; + static float temp_iState_min[EXTRUDERS_T]; + static float temp_iState_max[EXTRUDERS_T]; + // static float pid_input[EXTRUDERS_T]; + // static float pid_output[EXTRUDERS_T]; + static bool pid_reset[EXTRUDERS_T]; +#endif //PIDTEMP + static unsigned char soft_pwm[EXTRUDERS_T]; + + +// Init min and max temp with extreme values to prevent false errors during startup +// static int minttemp[EXTRUDERS_T] = { 0 }; +// static int maxttemp[EXTRUDERS_T] = { 16383 }; // the first value used for all + static int bed_minttemp = 0; + static int bed_maxttemp = 16383; + + +//=========================================================================== +//============================= functions ============================ +//=========================================================================== + +void PID_autotune(float temp) +{ + float input; + int cycles=0; + bool heating = true; + + unsigned long temp_millis = millis(); + unsigned long t1=temp_millis; + unsigned long t2=temp_millis; + long t_high; + long t_low; + + long bias=PID_MAX/2; + long d = PID_MAX/2; + float Ku, Tu; + float Kp, Ki, Kd; + float max, min; + + SERIAL_ECHOLN("PID Autotune start"); + + disable_heater(); // switch off all heaters. + + soft_pwm[0] = PID_MAX/2; + + for(;;) { + + if(temp_meas_ready == true) { // temp sample ready + CRITICAL_SECTION_START; + temp_meas_ready = false; + CRITICAL_SECTION_END; + input = analog2temp(current_raw[0], 0); + + max=max(max,input); + min=min(min,input); + if(heating == true && input > temp) { + if(millis() - t2 > 5000) { + heating=false; + soft_pwm[0] = (bias - d) >> 1; + t1=millis(); + t_high=t1 - t2; + max=temp; + } + } + if(heating == false && input < temp) { + if(millis() - t1 > 5000) { + heating=true; + t2=millis(); + t_low=t2 - t1; + if(cycles > 0) { + bias += (d*(t_high - t_low))/(t_low + t_high); + bias = constrain(bias, 20 ,PID_MAX-FULL_PID_BAND); + if(bias > PID_MAX/2) d = PID_MAX - 1 - bias; + else d = bias; + + SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias); + SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d); + SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min); + SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max); + if(cycles > 2) { + Ku = (4.0*d)/(3.14159*(max-min)/2.0); + Tu = ((float)(t_low + t_high)/1000.0); + SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku); + SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu); + Kp = 0.6*Ku; + Ki = 2*Kp/Tu; + Kd = Kp*Tu/8; + SERIAL_PROTOCOLLNPGM(" Clasic PID ") + SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); + SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); + SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); + } + } + soft_pwm[0] = (bias + d) >> 1; + cycles++; + min=temp; + } + } + } + if(input > (temp + 20)) { + SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature to high"); + return; + } + if(millis() - temp_millis > 2000) { + temp_millis = millis(); + SERIAL_PROTOCOLPGM("ok T:"); + SERIAL_PROTOCOL(degHotend(0)); + SERIAL_PROTOCOLPGM(" @:"); + SERIAL_PROTOCOLLN(getHeaterPower(0)); + } + if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) { + SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout"); + return; + } + if(cycles > 5) { + SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h"); + return; + } + LCD_STATUS; + } +} + +void updatePID() +{ +#ifdef PIDTEMP + for(int e = 0; e < EXTRUDERS_T; e++) { + temp_iState_max[e] = Ki_Max / Ki; + } +#endif +} + +int getHeaterPower(int heater) { + return soft_pwm[heater]; +} + +void manage_heater() +{ + float pid_input; + float pid_output; + + if(temp_meas_ready != true) //better readability + return; + + CRITICAL_SECTION_START; + temp_meas_ready = false; + CRITICAL_SECTION_END; + + for(int e = 0; e < EXTRUDERS_T; e++) + { + + #ifdef PIDTEMP + pid_input = analog2temp(current_raw[e], e); + + + pid_error[e] = pid_setpoint[e] - pid_input; + if(pid_error[e] > FULL_PID_BAND) { + pid_output = PID_MAX; + pid_reset[e] = true; + } + else if(pid_error[e] < -FULL_PID_BAND) { + pid_output = 0; + pid_reset[e] = true; + } + else { + if(pid_reset[e] == true) { + temp_iState[e] = 0.0; + pid_reset[e] = false; + } + pTerm[e] = Kp * pid_error[e]; + temp_iState[e] += pid_error[e]; + temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); + iTerm[e] = Ki * temp_iState[e]; + //K1 defined in Configuration.h in the PID settings + #define K2 (1.0-K1) + dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]); + temp_dState[e] = pid_input; + pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX); + } + + #ifdef PID_DEBUG + SERIAL_ECHOLN(" PIDDEBUG "<<e<<": Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm[e]<<" iTerm "<<iTerm[e]<<" dTerm "<<dTerm[e]); + #endif //PID_DEBUG + #else /* PID off */ + pid_output = 0; + if(current_raw[e] < target_raw[e]) { + pid_output = PID_MAX; + } + #endif + + // Check if temperature is within the correct range + if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e])) + { + soft_pwm[e] = (int)pid_output >> 1; + } + else { + soft_pwm[e] = 0; + } + } // End extruder for loop + + + if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) + return; + previous_millis_bed_heater = millis(); + + #if TEMP_BED_PIN > -1 + + // Check if temperature is within the correct range + if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) { + if(current_raw_bed >= target_raw_bed) + { + WRITE(HEATER_BED_PIN,LOW); + } + else + { + WRITE(HEATER_BED_PIN,HIGH); + } + } + else { + WRITE(HEATER_BED_PIN,LOW); + } + #endif +} + +// Use algebra to work out temperatures, not tables +// NB - this assumes all extruders use the same thermistor type. +int temp2analogi(int celsius, const float& beta, const float& rs, const float& r_inf) +{ + float r = r_inf*exp(beta/(celsius - ABS_ZERO)); + return AD_RANGE - (int)(0.5 + AD_RANGE*r/(r + rs)); +} + +float analog2tempi(int raw, const float& beta, const float& rs, const float& r_inf) +{ + float rawf = (float)(AD_RANGE - raw); + return ABS_ZERO + beta/log( (rawf*rs/(AD_RANGE - rawf))/r_inf ); +} + + +#ifdef REPRAPPRO_MULTIMATERIALS + + +float analog2temp_remote(uint8_t e) +{ + return slaveDegHotend(e); +} + +int temp2analog_remote(int celsius, uint8_t e) +{ + // What do we do about this, then? + return temp2analogi(celsius, n_beta, n_resistor, n_inf); +} +#endif + + +int temp2analog(int celsius, uint8_t e) +{ +#ifdef REPRAPPRO_MULTIMATERIALS + if(e > 0) return temp2analog_remote(celsius, e); +#endif + return temp2analogi(celsius, n_beta, n_resistor, n_inf); +} +float analog2temp(int raw, uint8_t e) +{ +#ifdef REPRAPPRO_MULTIMATERIALS + if(e > 0) return analog2temp_remote(e); +#endif + return analog2tempi(raw, n_beta, n_resistor, n_inf); +} + +int temp2analogBed(int celsius) +{ + return temp2analogi(celsius, b_beta, b_resistor, b_inf); +} +float analog2tempBed(int raw) +{ + return analog2tempi(raw, b_beta, b_resistor, b_inf); +} + + + +void tp_init() +{ + // Finish init of mult extruder arrays + for(int e = 0; e < EXTRUDERS_T; e++) { + // populate with the first value + maxttemp[e] = maxttemp[0]; +#ifdef PIDTEMP + temp_iState_min[e] = 0.0; + temp_iState_max[e] = Ki_Max / Ki; +#endif //PIDTEMP + } + + #if (HEATER_0_PIN > -1) + SET_OUTPUT(HEATER_0_PIN); + #endif + #if (HEATER_1_PIN > -1) + SET_OUTPUT(HEATER_1_PIN); + #endif + #if (HEATER_2_PIN > -1) + SET_OUTPUT(HEATER_2_PIN); + #endif + #if (HEATER_BED_PIN > -1) + SET_OUTPUT(HEATER_BED_PIN); + #endif + #if (FAN_PIN > -1) + SET_OUTPUT(FAN_PIN); + #endif + + + // Set analog inputs + ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; + DIDR0 = 0; + #ifdef DIDR2 + DIDR2 = 0; + #endif + #if (TEMP_0_PIN > -1) + #if TEMP_0_PIN < 8 + DIDR0 |= 1 << TEMP_0_PIN; + #else + DIDR2 |= 1<<(TEMP_0_PIN - 8); + #endif + #endif + #if (TEMP_1_PIN > -1) + #if TEMP_1_PIN < 8 + DIDR0 |= 1<<TEMP_1_PIN; + #else + DIDR2 |= 1<<(TEMP_1_PIN - 8); + #endif + #endif + #if (TEMP_2_PIN > -1) + #if TEMP_2_PIN < 8 + DIDR0 |= 1 << TEMP_2_PIN; + #else + DIDR2 = 1<<(TEMP_2_PIN - 8); + #endif + #endif + #if (TEMP_BED_PIN > -1) + #if TEMP_BED_PIN < 8 + DIDR0 |= 1<<TEMP_BED_PIN; + #else + DIDR2 |= 1<<(TEMP_BED_PIN - 8); + #endif + #endif + + // Use timer0 for temperature measurement + // Interleave temperature interrupt with millies interrupt + OCR0B = 128; + TIMSK0 |= (1<<OCIE0B); + + // Wait for temperature measurement to settle + delay(250); + +#ifdef HEATER_0_MINTEMP + minttemp[0] = temp2analog(HEATER_0_MINTEMP, 0); +#endif //MINTEMP +#ifdef HEATER_0_MAXTEMP + maxttemp[0] = temp2analog(HEATER_0_MAXTEMP, 0); +#endif //MAXTEMP + +#if (EXTRUDERS_T > 1) && defined(HEATER_1_MINTEMP) + minttemp[1] = temp2analog(HEATER_1_MINTEMP, 1); +#endif // MINTEMP 1 +#if (EXTRUDERS_T > 1) && defined(HEATER_1_MAXTEMP) + maxttemp[1] = temp2analog(HEATER_1_MAXTEMP, 1); +#endif //MAXTEMP 1 + +#if (EXTRUDERS_T > 2) && defined(HEATER_2_MINTEMP) + minttemp[2] = temp2analog(HEATER_2_MINTEMP, 2); +#endif //MINTEMP 2 +#if (EXTRUDERS_T > 2) && defined(HEATER_2_MAXTEMP) + maxttemp[2] = temp2analog(HEATER_2_MAXTEMP, 2); +#endif //MAXTEMP 2 + +#ifdef BED_MINTEMP + bed_minttemp = temp2analogBed(BED_MINTEMP); +#endif //BED_MINTEMP +#ifdef BED_MAXTEMP + bed_maxttemp = temp2analogBed(BED_MAXTEMP); +#endif //BED_MAXTEMP +} + + + +void disable_heater() +{ + for(int i=0;i<EXTRUDERS_T;i++) + setTargetHotend(0,i); + setTargetBed(0); + #if TEMP_0_PIN > -1 + target_raw[0]=0; + soft_pwm[0]=0; + #if HEATER_0_PIN > -1 + WRITE(HEATER_0_PIN,LOW); + #endif + #endif + + #if TEMP_1_PIN > -1 + target_raw[1]=0; + soft_pwm[1]=0; + #if HEATER_1_PIN > -1 + WRITE(HEATER_1_PIN,LOW); + #endif + #endif + + #if TEMP_2_PIN > -1 + target_raw[2]=0; + soft_pwm[2]=0; + #if HEATER_2_PIN > -1 + WRITE(HEATER_2_PIN,LOW); + #endif + #endif + + #if TEMP_BED_PIN > -1 + target_raw_bed=0; + #if HEATER_BED_PIN > -1 + WRITE(HEATER_BED_PIN,LOW); + #endif + #endif +} + +void max_temp_error(uint8_t e) { + disable_heater(); + if(IsStopped() == false) { + SERIAL_ERROR_START; + SERIAL_ERRORLN((int)e); + SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !"); + } +} + +void min_temp_error(uint8_t e) { + disable_heater(); + if(IsStopped() == false) { + SERIAL_ERROR_START; + SERIAL_ERRORLN((int)e); + SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !"); + } +} + +void bed_max_temp_error(void) { +#if HEATER_BED_PIN > -1 + WRITE(HEATER_BED_PIN, 0); +#endif + if(IsStopped() == false) { + SERIAL_ERROR_START; + SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!"); + } +} + + +// Timer 0 is shared with millies +ISR(TIMER0_COMPB_vect) +{ + //these variables are only accesible from the ISR, but static, so they don't loose their value + static unsigned char temp_count = 0; + static unsigned long raw_temp_0_value = 0; + static unsigned long raw_temp_1_value = 0; + static unsigned long raw_temp_2_value = 0; + static unsigned long raw_temp_bed_value = 0; + static unsigned char temp_state = 0; + static unsigned char pwm_count = 1; + static unsigned char soft_pwm_0; + static unsigned char soft_pwm_1; + static unsigned char soft_pwm_2; + + if(pwm_count == 0){ + soft_pwm_0 = soft_pwm[0]; + if(soft_pwm_0 > 0) WRITE(HEATER_0_PIN,1); + #ifdef REPRAPPRO_MULTIMATERIALS + // Nothing to do here - remote handles it + #else + #if EXTRUDERS_T > 1 + soft_pwm_1 = soft_pwm[1]; + if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); + #endif + #if EXTRUDERS_T > 2 + soft_pwm_2 = soft_pwm[2]; + if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); + #endif + #endif + } + if(soft_pwm_0 <= pwm_count) WRITE(HEATER_0_PIN,0); + #ifdef REPRAPPRO_MULTIMATERIALS + // Nothing to do here - remote handles it + #else + #if EXTRUDERS_T > 1 + if(soft_pwm_1 <= pwm_count) WRITE(HEATER_1_PIN,0); + #endif + #if EXTRUDERS_T > 2 + if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0); + #endif + #endif + pwm_count++; + pwm_count &= 0x7f; + + switch(temp_state) { + case 0: // Prepare TEMP_0 + #if (TEMP_0_PIN > -1) + #if TEMP_0_PIN > 7 + ADCSRB = 1<<MUX5; + #else + ADCSRB = 0; + #endif + ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07)); + ADCSRA |= 1<<ADSC; // Start conversion + #endif + #ifdef ULTIPANEL + buttons_check(); + #endif + temp_state = 1; + break; + case 1: // Measure TEMP_0 + #if (TEMP_0_PIN > -1) + raw_temp_0_value += ADC; + #endif + + temp_state = 2; + break; + case 2: // Prepare TEMP_BED + #if (TEMP_BED_PIN > -1) + #if TEMP_BED_PIN > 7 + ADCSRB = 1<<MUX5; + #endif + ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07)); + ADCSRA |= 1<<ADSC; // Start conversion + #endif + #ifdef ULTIPANEL + buttons_check(); + #endif + temp_state = 3; + break; + case 3: // Measure TEMP_BED + #if (TEMP_BED_PIN > -1) + raw_temp_bed_value += ADC; + #endif + temp_state = 4; + break; + case 4: // Prepare TEMP_1 + #if (TEMP_1_PIN > -1) + #if TEMP_1_PIN > 7 + ADCSRB = 1<<MUX5; + #else + ADCSRB = 0; + #endif + ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07)); + ADCSRA |= 1<<ADSC; // Start conversion + #endif + #ifdef ULTIPANEL + buttons_check(); + #endif + temp_state = 5; + break; + case 5: // Measure TEMP_1 + #if (TEMP_1_PIN > -1) + raw_temp_1_value += ADC; + #endif + temp_state = 6; + break; + case 6: // Prepare TEMP_2 + #if (TEMP_2_PIN > -1) + #if TEMP_2_PIN > 7 + ADCSRB = 1<<MUX5; + #else + ADCSRB = 0; + #endif + ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07)); + ADCSRA |= 1<<ADSC; // Start conversion + #endif + #ifdef ULTIPANEL + buttons_check(); + #endif + temp_state = 7; + break; + case 7: // Measure TEMP_2 + #if (TEMP_2_PIN > -1) + raw_temp_2_value += ADC; + #endif + temp_state = 0; + temp_count++; + break; +// default: +// SERIAL_ERROR_START; +// SERIAL_ERRORLNPGM("Temp measurement error!"); +// break; + } + + if(temp_count >= 16) // 8 ms * 16 = 128ms. + { + #if defined(HEATER_0_USES_AD595) || defined(HEATER_0_USES_MAX6675) + current_raw[0] = raw_temp_0_value; + #else + current_raw[0] = 16383 - raw_temp_0_value; + #endif + +#if EXTRUDERS_T > 1 + #ifdef HEATER_1_USES_AD595 + current_raw[1] = raw_temp_1_value; + #else + current_raw[1] = 16383 - raw_temp_1_value; + #endif +#endif + +#if EXTRUDERS_T > 2 + #ifdef HEATER_2_USES_AD595 + current_raw[2] = raw_temp_2_value; + #else + current_raw[2] = 16383 - raw_temp_2_value; + #endif +#endif + + + current_raw_bed = 16383 - raw_temp_bed_value; + + + temp_meas_ready = true; + temp_count = 0; + raw_temp_0_value = 0; + raw_temp_1_value = 0; + raw_temp_2_value = 0; + raw_temp_bed_value = 0; + + for(unsigned char e = 0; e < EXTRUDERS_T; e++) { + if(current_raw[e] >= maxttemp[e]) { + target_raw[e] = 0; + max_temp_error(e); + #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE + { + Stop(); + } + #endif + } + if(current_raw[e] <= minttemp[e]) { + target_raw[e] = 0; + min_temp_error(e); + #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE + { + Stop(); + } + #endif + } + } + +#if defined(BED_MAXTEMP) && (HEATER_BED_PIN > -1) + if(current_raw_bed >= bed_maxttemp) { + target_raw_bed = 0; + bed_max_temp_error(); + Stop(); + } +#endif + } +} +