|
1 /* |
|
2 temperature.c - temperature control |
|
3 Part of Marlin |
|
4 |
|
5 Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm |
|
6 |
|
7 This program is free software: you can redistribute it and/or modify |
|
8 it under the terms of the GNU General Public License as published by |
|
9 the Free Software Foundation, either version 3 of the License, or |
|
10 (at your option) any later version. |
|
11 |
|
12 This program is distributed in the hope that it will be useful, |
|
13 but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
15 GNU General Public License for more details. |
|
16 |
|
17 You should have received a copy of the GNU General Public License |
|
18 along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
19 */ |
|
20 |
|
21 /* |
|
22 This firmware is a mashup between Sprinter and grbl. |
|
23 (https://github.com/kliment/Sprinter) |
|
24 (https://github.com/simen/grbl/tree) |
|
25 |
|
26 It has preliminary support for Matthew Roberts advance algorithm |
|
27 http://reprap.org/pipermail/reprap-dev/2011-May/003323.html |
|
28 |
|
29 */ |
|
30 |
|
31 |
|
32 #include "Marlin.h" |
|
33 #include "ultralcd.h" |
|
34 #include "temperature.h" |
|
35 |
|
36 //=========================================================================== |
|
37 //=============================public variables============================ |
|
38 //=========================================================================== |
|
39 int target_raw[EXTRUDERS_T] = { 0 }; |
|
40 int target_raw_bed = 0; |
|
41 |
|
42 int current_raw[EXTRUDERS_T] = { 0 }; |
|
43 int current_raw_bed = 0; |
|
44 |
|
45 int b_beta = BED_BETA; |
|
46 int b_resistor = BED_RS; |
|
47 long b_thermistor = BED_NTC; |
|
48 float b_inf = BED_R_INF; |
|
49 |
|
50 int n_beta = E_BETA; |
|
51 int n_resistor = E_RS; |
|
52 long n_thermistor = E_NTC; |
|
53 float n_inf = E_R_INF; |
|
54 |
|
55 #ifdef PIDTEMP |
|
56 // used external |
|
57 float pid_setpoint[EXTRUDERS_T] = { 0.0 }; |
|
58 |
|
59 float Kp=DEFAULT_Kp; |
|
60 float Ki=DEFAULT_Ki; |
|
61 int Ki_Max=PID_INTEGRAL_DRIVE_MAX; |
|
62 float Kd=DEFAULT_Kd; |
|
63 |
|
64 #endif //PIDTEMP |
|
65 |
|
66 |
|
67 //=========================================================================== |
|
68 //=============================private variables============================ |
|
69 //=========================================================================== |
|
70 static volatile bool temp_meas_ready = false; |
|
71 |
|
72 static unsigned long previous_millis_bed_heater; |
|
73 //static unsigned long previous_millis_heater; |
|
74 |
|
75 #ifdef PIDTEMP |
|
76 //static cannot be external: |
|
77 static float temp_iState[EXTRUDERS_T] = { 0 }; |
|
78 static float temp_dState[EXTRUDERS_T] = { 0 }; |
|
79 static float pTerm[EXTRUDERS_T]; |
|
80 static float iTerm[EXTRUDERS_T]; |
|
81 static float dTerm[EXTRUDERS_T]; |
|
82 //int output; |
|
83 static float pid_error[EXTRUDERS_T]; |
|
84 static float temp_iState_min[EXTRUDERS_T]; |
|
85 static float temp_iState_max[EXTRUDERS_T]; |
|
86 // static float pid_input[EXTRUDERS_T]; |
|
87 // static float pid_output[EXTRUDERS_T]; |
|
88 static bool pid_reset[EXTRUDERS_T]; |
|
89 #endif //PIDTEMP |
|
90 static unsigned char soft_pwm[EXTRUDERS_T]; |
|
91 |
|
92 |
|
93 // Init min and max temp with extreme values to prevent false errors during startup |
|
94 // static int minttemp[EXTRUDERS_T] = { 0 }; |
|
95 // static int maxttemp[EXTRUDERS_T] = { 16383 }; // the first value used for all |
|
96 static int bed_minttemp = 0; |
|
97 static int bed_maxttemp = 16383; |
|
98 |
|
99 |
|
100 //=========================================================================== |
|
101 //============================= functions ============================ |
|
102 //=========================================================================== |
|
103 |
|
104 void PID_autotune(float temp) |
|
105 { |
|
106 float input; |
|
107 int cycles=0; |
|
108 bool heating = true; |
|
109 |
|
110 unsigned long temp_millis = millis(); |
|
111 unsigned long t1=temp_millis; |
|
112 unsigned long t2=temp_millis; |
|
113 long t_high; |
|
114 long t_low; |
|
115 |
|
116 long bias=PID_MAX/2; |
|
117 long d = PID_MAX/2; |
|
118 float Ku, Tu; |
|
119 float Kp, Ki, Kd; |
|
120 float max, min; |
|
121 |
|
122 SERIAL_ECHOLN("PID Autotune start"); |
|
123 |
|
124 disable_heater(); // switch off all heaters. |
|
125 |
|
126 soft_pwm[0] = PID_MAX/2; |
|
127 |
|
128 for(;;) { |
|
129 |
|
130 if(temp_meas_ready == true) { // temp sample ready |
|
131 CRITICAL_SECTION_START; |
|
132 temp_meas_ready = false; |
|
133 CRITICAL_SECTION_END; |
|
134 input = analog2temp(current_raw[0], 0); |
|
135 |
|
136 max=max(max,input); |
|
137 min=min(min,input); |
|
138 if(heating == true && input > temp) { |
|
139 if(millis() - t2 > 5000) { |
|
140 heating=false; |
|
141 soft_pwm[0] = (bias - d) >> 1; |
|
142 t1=millis(); |
|
143 t_high=t1 - t2; |
|
144 max=temp; |
|
145 } |
|
146 } |
|
147 if(heating == false && input < temp) { |
|
148 if(millis() - t1 > 5000) { |
|
149 heating=true; |
|
150 t2=millis(); |
|
151 t_low=t2 - t1; |
|
152 if(cycles > 0) { |
|
153 bias += (d*(t_high - t_low))/(t_low + t_high); |
|
154 bias = constrain(bias, 20 ,PID_MAX-FULL_PID_BAND); |
|
155 if(bias > PID_MAX/2) d = PID_MAX - 1 - bias; |
|
156 else d = bias; |
|
157 |
|
158 SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias); |
|
159 SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d); |
|
160 SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min); |
|
161 SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max); |
|
162 if(cycles > 2) { |
|
163 Ku = (4.0*d)/(3.14159*(max-min)/2.0); |
|
164 Tu = ((float)(t_low + t_high)/1000.0); |
|
165 SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku); |
|
166 SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu); |
|
167 Kp = 0.6*Ku; |
|
168 Ki = 2*Kp/Tu; |
|
169 Kd = Kp*Tu/8; |
|
170 SERIAL_PROTOCOLLNPGM(" Clasic PID ") |
|
171 SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); |
|
172 SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); |
|
173 SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); |
|
174 } |
|
175 } |
|
176 soft_pwm[0] = (bias + d) >> 1; |
|
177 cycles++; |
|
178 min=temp; |
|
179 } |
|
180 } |
|
181 } |
|
182 if(input > (temp + 20)) { |
|
183 SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature to high"); |
|
184 return; |
|
185 } |
|
186 if(millis() - temp_millis > 2000) { |
|
187 temp_millis = millis(); |
|
188 SERIAL_PROTOCOLPGM("ok T:"); |
|
189 SERIAL_PROTOCOL(degHotend(0)); |
|
190 SERIAL_PROTOCOLPGM(" @:"); |
|
191 SERIAL_PROTOCOLLN(getHeaterPower(0)); |
|
192 } |
|
193 if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) { |
|
194 SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout"); |
|
195 return; |
|
196 } |
|
197 if(cycles > 5) { |
|
198 SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h"); |
|
199 return; |
|
200 } |
|
201 LCD_STATUS; |
|
202 } |
|
203 } |
|
204 |
|
205 void updatePID() |
|
206 { |
|
207 #ifdef PIDTEMP |
|
208 for(int e = 0; e < EXTRUDERS_T; e++) { |
|
209 temp_iState_max[e] = Ki_Max / Ki; |
|
210 } |
|
211 #endif |
|
212 } |
|
213 |
|
214 int getHeaterPower(int heater) { |
|
215 return soft_pwm[heater]; |
|
216 } |
|
217 |
|
218 void manage_heater() |
|
219 { |
|
220 float pid_input; |
|
221 float pid_output; |
|
222 |
|
223 if(temp_meas_ready != true) //better readability |
|
224 return; |
|
225 |
|
226 CRITICAL_SECTION_START; |
|
227 temp_meas_ready = false; |
|
228 CRITICAL_SECTION_END; |
|
229 |
|
230 for(int e = 0; e < EXTRUDERS_T; e++) |
|
231 { |
|
232 |
|
233 #ifdef PIDTEMP |
|
234 pid_input = analog2temp(current_raw[e], e); |
|
235 |
|
236 |
|
237 pid_error[e] = pid_setpoint[e] - pid_input; |
|
238 if(pid_error[e] > FULL_PID_BAND) { |
|
239 pid_output = PID_MAX; |
|
240 pid_reset[e] = true; |
|
241 } |
|
242 else if(pid_error[e] < -FULL_PID_BAND) { |
|
243 pid_output = 0; |
|
244 pid_reset[e] = true; |
|
245 } |
|
246 else { |
|
247 if(pid_reset[e] == true) { |
|
248 temp_iState[e] = 0.0; |
|
249 pid_reset[e] = false; |
|
250 } |
|
251 pTerm[e] = Kp * pid_error[e]; |
|
252 temp_iState[e] += pid_error[e]; |
|
253 temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); |
|
254 iTerm[e] = Ki * temp_iState[e]; |
|
255 //K1 defined in Configuration.h in the PID settings |
|
256 #define K2 (1.0-K1) |
|
257 dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]); |
|
258 temp_dState[e] = pid_input; |
|
259 pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX); |
|
260 } |
|
261 |
|
262 #ifdef PID_DEBUG |
|
263 SERIAL_ECHOLN(" PIDDEBUG "<<e<<": Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm[e]<<" iTerm "<<iTerm[e]<<" dTerm "<<dTerm[e]); |
|
264 #endif //PID_DEBUG |
|
265 #else /* PID off */ |
|
266 pid_output = 0; |
|
267 if(current_raw[e] < target_raw[e]) { |
|
268 pid_output = PID_MAX; |
|
269 } |
|
270 #endif |
|
271 |
|
272 // Check if temperature is within the correct range |
|
273 if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e])) |
|
274 { |
|
275 soft_pwm[e] = (int)pid_output >> 1; |
|
276 } |
|
277 else { |
|
278 soft_pwm[e] = 0; |
|
279 } |
|
280 } // End extruder for loop |
|
281 |
|
282 |
|
283 if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) |
|
284 return; |
|
285 previous_millis_bed_heater = millis(); |
|
286 |
|
287 #if TEMP_BED_PIN > -1 |
|
288 |
|
289 // Check if temperature is within the correct range |
|
290 if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) { |
|
291 if(current_raw_bed >= target_raw_bed) |
|
292 { |
|
293 WRITE(HEATER_BED_PIN,LOW); |
|
294 } |
|
295 else |
|
296 { |
|
297 WRITE(HEATER_BED_PIN,HIGH); |
|
298 } |
|
299 } |
|
300 else { |
|
301 WRITE(HEATER_BED_PIN,LOW); |
|
302 } |
|
303 #endif |
|
304 } |
|
305 |
|
306 // Use algebra to work out temperatures, not tables |
|
307 // NB - this assumes all extruders use the same thermistor type. |
|
308 int temp2analogi(int celsius, const float& beta, const float& rs, const float& r_inf) |
|
309 { |
|
310 float r = r_inf*exp(beta/(celsius - ABS_ZERO)); |
|
311 return AD_RANGE - (int)(0.5 + AD_RANGE*r/(r + rs)); |
|
312 } |
|
313 |
|
314 float analog2tempi(int raw, const float& beta, const float& rs, const float& r_inf) |
|
315 { |
|
316 float rawf = (float)(AD_RANGE - raw); |
|
317 return ABS_ZERO + beta/log( (rawf*rs/(AD_RANGE - rawf))/r_inf ); |
|
318 } |
|
319 |
|
320 |
|
321 #ifdef REPRAPPRO_MULTIMATERIALS |
|
322 |
|
323 |
|
324 float analog2temp_remote(uint8_t e) |
|
325 { |
|
326 return slaveDegHotend(e); |
|
327 } |
|
328 |
|
329 int temp2analog_remote(int celsius, uint8_t e) |
|
330 { |
|
331 // What do we do about this, then? |
|
332 return temp2analogi(celsius, n_beta, n_resistor, n_inf); |
|
333 } |
|
334 #endif |
|
335 |
|
336 |
|
337 int temp2analog(int celsius, uint8_t e) |
|
338 { |
|
339 #ifdef REPRAPPRO_MULTIMATERIALS |
|
340 if(e > 0) return temp2analog_remote(celsius, e); |
|
341 #endif |
|
342 return temp2analogi(celsius, n_beta, n_resistor, n_inf); |
|
343 } |
|
344 float analog2temp(int raw, uint8_t e) |
|
345 { |
|
346 #ifdef REPRAPPRO_MULTIMATERIALS |
|
347 if(e > 0) return analog2temp_remote(e); |
|
348 #endif |
|
349 return analog2tempi(raw, n_beta, n_resistor, n_inf); |
|
350 } |
|
351 |
|
352 int temp2analogBed(int celsius) |
|
353 { |
|
354 return temp2analogi(celsius, b_beta, b_resistor, b_inf); |
|
355 } |
|
356 float analog2tempBed(int raw) |
|
357 { |
|
358 return analog2tempi(raw, b_beta, b_resistor, b_inf); |
|
359 } |
|
360 |
|
361 |
|
362 |
|
363 void tp_init() |
|
364 { |
|
365 // Finish init of mult extruder arrays |
|
366 for(int e = 0; e < EXTRUDERS_T; e++) { |
|
367 // populate with the first value |
|
368 maxttemp[e] = maxttemp[0]; |
|
369 #ifdef PIDTEMP |
|
370 temp_iState_min[e] = 0.0; |
|
371 temp_iState_max[e] = Ki_Max / Ki; |
|
372 #endif //PIDTEMP |
|
373 } |
|
374 |
|
375 #if (HEATER_0_PIN > -1) |
|
376 SET_OUTPUT(HEATER_0_PIN); |
|
377 #endif |
|
378 #if (HEATER_1_PIN > -1) |
|
379 SET_OUTPUT(HEATER_1_PIN); |
|
380 #endif |
|
381 #if (HEATER_2_PIN > -1) |
|
382 SET_OUTPUT(HEATER_2_PIN); |
|
383 #endif |
|
384 #if (HEATER_BED_PIN > -1) |
|
385 SET_OUTPUT(HEATER_BED_PIN); |
|
386 #endif |
|
387 #if (FAN_PIN > -1) |
|
388 SET_OUTPUT(FAN_PIN); |
|
389 #endif |
|
390 |
|
391 |
|
392 // Set analog inputs |
|
393 ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; |
|
394 DIDR0 = 0; |
|
395 #ifdef DIDR2 |
|
396 DIDR2 = 0; |
|
397 #endif |
|
398 #if (TEMP_0_PIN > -1) |
|
399 #if TEMP_0_PIN < 8 |
|
400 DIDR0 |= 1 << TEMP_0_PIN; |
|
401 #else |
|
402 DIDR2 |= 1<<(TEMP_0_PIN - 8); |
|
403 #endif |
|
404 #endif |
|
405 #if (TEMP_1_PIN > -1) |
|
406 #if TEMP_1_PIN < 8 |
|
407 DIDR0 |= 1<<TEMP_1_PIN; |
|
408 #else |
|
409 DIDR2 |= 1<<(TEMP_1_PIN - 8); |
|
410 #endif |
|
411 #endif |
|
412 #if (TEMP_2_PIN > -1) |
|
413 #if TEMP_2_PIN < 8 |
|
414 DIDR0 |= 1 << TEMP_2_PIN; |
|
415 #else |
|
416 DIDR2 = 1<<(TEMP_2_PIN - 8); |
|
417 #endif |
|
418 #endif |
|
419 #if (TEMP_BED_PIN > -1) |
|
420 #if TEMP_BED_PIN < 8 |
|
421 DIDR0 |= 1<<TEMP_BED_PIN; |
|
422 #else |
|
423 DIDR2 |= 1<<(TEMP_BED_PIN - 8); |
|
424 #endif |
|
425 #endif |
|
426 |
|
427 // Use timer0 for temperature measurement |
|
428 // Interleave temperature interrupt with millies interrupt |
|
429 OCR0B = 128; |
|
430 TIMSK0 |= (1<<OCIE0B); |
|
431 |
|
432 // Wait for temperature measurement to settle |
|
433 delay(250); |
|
434 |
|
435 #ifdef HEATER_0_MINTEMP |
|
436 minttemp[0] = temp2analog(HEATER_0_MINTEMP, 0); |
|
437 #endif //MINTEMP |
|
438 #ifdef HEATER_0_MAXTEMP |
|
439 maxttemp[0] = temp2analog(HEATER_0_MAXTEMP, 0); |
|
440 #endif //MAXTEMP |
|
441 |
|
442 #if (EXTRUDERS_T > 1) && defined(HEATER_1_MINTEMP) |
|
443 minttemp[1] = temp2analog(HEATER_1_MINTEMP, 1); |
|
444 #endif // MINTEMP 1 |
|
445 #if (EXTRUDERS_T > 1) && defined(HEATER_1_MAXTEMP) |
|
446 maxttemp[1] = temp2analog(HEATER_1_MAXTEMP, 1); |
|
447 #endif //MAXTEMP 1 |
|
448 |
|
449 #if (EXTRUDERS_T > 2) && defined(HEATER_2_MINTEMP) |
|
450 minttemp[2] = temp2analog(HEATER_2_MINTEMP, 2); |
|
451 #endif //MINTEMP 2 |
|
452 #if (EXTRUDERS_T > 2) && defined(HEATER_2_MAXTEMP) |
|
453 maxttemp[2] = temp2analog(HEATER_2_MAXTEMP, 2); |
|
454 #endif //MAXTEMP 2 |
|
455 |
|
456 #ifdef BED_MINTEMP |
|
457 bed_minttemp = temp2analogBed(BED_MINTEMP); |
|
458 #endif //BED_MINTEMP |
|
459 #ifdef BED_MAXTEMP |
|
460 bed_maxttemp = temp2analogBed(BED_MAXTEMP); |
|
461 #endif //BED_MAXTEMP |
|
462 } |
|
463 |
|
464 |
|
465 |
|
466 void disable_heater() |
|
467 { |
|
468 for(int i=0;i<EXTRUDERS_T;i++) |
|
469 setTargetHotend(0,i); |
|
470 setTargetBed(0); |
|
471 #if TEMP_0_PIN > -1 |
|
472 target_raw[0]=0; |
|
473 soft_pwm[0]=0; |
|
474 #if HEATER_0_PIN > -1 |
|
475 WRITE(HEATER_0_PIN,LOW); |
|
476 #endif |
|
477 #endif |
|
478 |
|
479 #if TEMP_1_PIN > -1 |
|
480 target_raw[1]=0; |
|
481 soft_pwm[1]=0; |
|
482 #if HEATER_1_PIN > -1 |
|
483 WRITE(HEATER_1_PIN,LOW); |
|
484 #endif |
|
485 #endif |
|
486 |
|
487 #if TEMP_2_PIN > -1 |
|
488 target_raw[2]=0; |
|
489 soft_pwm[2]=0; |
|
490 #if HEATER_2_PIN > -1 |
|
491 WRITE(HEATER_2_PIN,LOW); |
|
492 #endif |
|
493 #endif |
|
494 |
|
495 #if TEMP_BED_PIN > -1 |
|
496 target_raw_bed=0; |
|
497 #if HEATER_BED_PIN > -1 |
|
498 WRITE(HEATER_BED_PIN,LOW); |
|
499 #endif |
|
500 #endif |
|
501 } |
|
502 |
|
503 void max_temp_error(uint8_t e) { |
|
504 disable_heater(); |
|
505 if(IsStopped() == false) { |
|
506 SERIAL_ERROR_START; |
|
507 SERIAL_ERRORLN((int)e); |
|
508 SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !"); |
|
509 } |
|
510 } |
|
511 |
|
512 void min_temp_error(uint8_t e) { |
|
513 disable_heater(); |
|
514 if(IsStopped() == false) { |
|
515 SERIAL_ERROR_START; |
|
516 SERIAL_ERRORLN((int)e); |
|
517 SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !"); |
|
518 } |
|
519 } |
|
520 |
|
521 void bed_max_temp_error(void) { |
|
522 #if HEATER_BED_PIN > -1 |
|
523 WRITE(HEATER_BED_PIN, 0); |
|
524 #endif |
|
525 if(IsStopped() == false) { |
|
526 SERIAL_ERROR_START; |
|
527 SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!"); |
|
528 } |
|
529 } |
|
530 |
|
531 |
|
532 // Timer 0 is shared with millies |
|
533 ISR(TIMER0_COMPB_vect) |
|
534 { |
|
535 //these variables are only accesible from the ISR, but static, so they don't loose their value |
|
536 static unsigned char temp_count = 0; |
|
537 static unsigned long raw_temp_0_value = 0; |
|
538 static unsigned long raw_temp_1_value = 0; |
|
539 static unsigned long raw_temp_2_value = 0; |
|
540 static unsigned long raw_temp_bed_value = 0; |
|
541 static unsigned char temp_state = 0; |
|
542 static unsigned char pwm_count = 1; |
|
543 static unsigned char soft_pwm_0; |
|
544 static unsigned char soft_pwm_1; |
|
545 static unsigned char soft_pwm_2; |
|
546 |
|
547 if(pwm_count == 0){ |
|
548 soft_pwm_0 = soft_pwm[0]; |
|
549 if(soft_pwm_0 > 0) WRITE(HEATER_0_PIN,1); |
|
550 #ifdef REPRAPPRO_MULTIMATERIALS |
|
551 // Nothing to do here - remote handles it |
|
552 #else |
|
553 #if EXTRUDERS_T > 1 |
|
554 soft_pwm_1 = soft_pwm[1]; |
|
555 if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); |
|
556 #endif |
|
557 #if EXTRUDERS_T > 2 |
|
558 soft_pwm_2 = soft_pwm[2]; |
|
559 if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); |
|
560 #endif |
|
561 #endif |
|
562 } |
|
563 if(soft_pwm_0 <= pwm_count) WRITE(HEATER_0_PIN,0); |
|
564 #ifdef REPRAPPRO_MULTIMATERIALS |
|
565 // Nothing to do here - remote handles it |
|
566 #else |
|
567 #if EXTRUDERS_T > 1 |
|
568 if(soft_pwm_1 <= pwm_count) WRITE(HEATER_1_PIN,0); |
|
569 #endif |
|
570 #if EXTRUDERS_T > 2 |
|
571 if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0); |
|
572 #endif |
|
573 #endif |
|
574 pwm_count++; |
|
575 pwm_count &= 0x7f; |
|
576 |
|
577 switch(temp_state) { |
|
578 case 0: // Prepare TEMP_0 |
|
579 #if (TEMP_0_PIN > -1) |
|
580 #if TEMP_0_PIN > 7 |
|
581 ADCSRB = 1<<MUX5; |
|
582 #else |
|
583 ADCSRB = 0; |
|
584 #endif |
|
585 ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07)); |
|
586 ADCSRA |= 1<<ADSC; // Start conversion |
|
587 #endif |
|
588 #ifdef ULTIPANEL |
|
589 buttons_check(); |
|
590 #endif |
|
591 temp_state = 1; |
|
592 break; |
|
593 case 1: // Measure TEMP_0 |
|
594 #if (TEMP_0_PIN > -1) |
|
595 raw_temp_0_value += ADC; |
|
596 #endif |
|
597 |
|
598 temp_state = 2; |
|
599 break; |
|
600 case 2: // Prepare TEMP_BED |
|
601 #if (TEMP_BED_PIN > -1) |
|
602 #if TEMP_BED_PIN > 7 |
|
603 ADCSRB = 1<<MUX5; |
|
604 #endif |
|
605 ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07)); |
|
606 ADCSRA |= 1<<ADSC; // Start conversion |
|
607 #endif |
|
608 #ifdef ULTIPANEL |
|
609 buttons_check(); |
|
610 #endif |
|
611 temp_state = 3; |
|
612 break; |
|
613 case 3: // Measure TEMP_BED |
|
614 #if (TEMP_BED_PIN > -1) |
|
615 raw_temp_bed_value += ADC; |
|
616 #endif |
|
617 temp_state = 4; |
|
618 break; |
|
619 case 4: // Prepare TEMP_1 |
|
620 #if (TEMP_1_PIN > -1) |
|
621 #if TEMP_1_PIN > 7 |
|
622 ADCSRB = 1<<MUX5; |
|
623 #else |
|
624 ADCSRB = 0; |
|
625 #endif |
|
626 ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07)); |
|
627 ADCSRA |= 1<<ADSC; // Start conversion |
|
628 #endif |
|
629 #ifdef ULTIPANEL |
|
630 buttons_check(); |
|
631 #endif |
|
632 temp_state = 5; |
|
633 break; |
|
634 case 5: // Measure TEMP_1 |
|
635 #if (TEMP_1_PIN > -1) |
|
636 raw_temp_1_value += ADC; |
|
637 #endif |
|
638 temp_state = 6; |
|
639 break; |
|
640 case 6: // Prepare TEMP_2 |
|
641 #if (TEMP_2_PIN > -1) |
|
642 #if TEMP_2_PIN > 7 |
|
643 ADCSRB = 1<<MUX5; |
|
644 #else |
|
645 ADCSRB = 0; |
|
646 #endif |
|
647 ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07)); |
|
648 ADCSRA |= 1<<ADSC; // Start conversion |
|
649 #endif |
|
650 #ifdef ULTIPANEL |
|
651 buttons_check(); |
|
652 #endif |
|
653 temp_state = 7; |
|
654 break; |
|
655 case 7: // Measure TEMP_2 |
|
656 #if (TEMP_2_PIN > -1) |
|
657 raw_temp_2_value += ADC; |
|
658 #endif |
|
659 temp_state = 0; |
|
660 temp_count++; |
|
661 break; |
|
662 // default: |
|
663 // SERIAL_ERROR_START; |
|
664 // SERIAL_ERRORLNPGM("Temp measurement error!"); |
|
665 // break; |
|
666 } |
|
667 |
|
668 if(temp_count >= 16) // 8 ms * 16 = 128ms. |
|
669 { |
|
670 #if defined(HEATER_0_USES_AD595) || defined(HEATER_0_USES_MAX6675) |
|
671 current_raw[0] = raw_temp_0_value; |
|
672 #else |
|
673 current_raw[0] = 16383 - raw_temp_0_value; |
|
674 #endif |
|
675 |
|
676 #if EXTRUDERS_T > 1 |
|
677 #ifdef HEATER_1_USES_AD595 |
|
678 current_raw[1] = raw_temp_1_value; |
|
679 #else |
|
680 current_raw[1] = 16383 - raw_temp_1_value; |
|
681 #endif |
|
682 #endif |
|
683 |
|
684 #if EXTRUDERS_T > 2 |
|
685 #ifdef HEATER_2_USES_AD595 |
|
686 current_raw[2] = raw_temp_2_value; |
|
687 #else |
|
688 current_raw[2] = 16383 - raw_temp_2_value; |
|
689 #endif |
|
690 #endif |
|
691 |
|
692 |
|
693 current_raw_bed = 16383 - raw_temp_bed_value; |
|
694 |
|
695 |
|
696 temp_meas_ready = true; |
|
697 temp_count = 0; |
|
698 raw_temp_0_value = 0; |
|
699 raw_temp_1_value = 0; |
|
700 raw_temp_2_value = 0; |
|
701 raw_temp_bed_value = 0; |
|
702 |
|
703 for(unsigned char e = 0; e < EXTRUDERS_T; e++) { |
|
704 if(current_raw[e] >= maxttemp[e]) { |
|
705 target_raw[e] = 0; |
|
706 max_temp_error(e); |
|
707 #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE |
|
708 { |
|
709 Stop(); |
|
710 } |
|
711 #endif |
|
712 } |
|
713 if(current_raw[e] <= minttemp[e]) { |
|
714 target_raw[e] = 0; |
|
715 min_temp_error(e); |
|
716 #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE |
|
717 { |
|
718 Stop(); |
|
719 } |
|
720 #endif |
|
721 } |
|
722 } |
|
723 |
|
724 #if defined(BED_MAXTEMP) && (HEATER_BED_PIN > -1) |
|
725 if(current_raw_bed >= bed_maxttemp) { |
|
726 target_raw_bed = 0; |
|
727 bed_max_temp_error(); |
|
728 Stop(); |
|
729 } |
|
730 #endif |
|
731 } |
|
732 } |
|
733 |