|
1 /* |
|
2 planner.c - buffers movement commands and manages the acceleration profile plan |
|
3 Part of Grbl |
|
4 |
|
5 Copyright (c) 2009-2011 Simen Svale Skogsrud |
|
6 |
|
7 Grbl is free software: you can redistribute it and/or modify |
|
8 it under the terms of the GNU General Public License as published by |
|
9 the Free Software Foundation, either version 3 of the License, or |
|
10 (at your option) any later version. |
|
11 |
|
12 Grbl is distributed in the hope that it will be useful, |
|
13 but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
15 GNU General Public License for more details. |
|
16 |
|
17 You should have received a copy of the GNU General Public License |
|
18 along with Grbl. If not, see <http://www.gnu.org/licenses/>. |
|
19 */ |
|
20 |
|
21 /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */ |
|
22 |
|
23 /* |
|
24 Reasoning behind the mathematics in this module (in the key of 'Mathematica'): |
|
25 |
|
26 s == speed, a == acceleration, t == time, d == distance |
|
27 |
|
28 Basic definitions: |
|
29 |
|
30 Speed[s_, a_, t_] := s + (a*t) |
|
31 Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] |
|
32 |
|
33 Distance to reach a specific speed with a constant acceleration: |
|
34 |
|
35 Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] |
|
36 d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() |
|
37 |
|
38 Speed after a given distance of travel with constant acceleration: |
|
39 |
|
40 Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] |
|
41 m -> Sqrt[2 a d + s^2] |
|
42 |
|
43 DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] |
|
44 |
|
45 When to start braking (di) to reach a specified destionation speed (s2) after accelerating |
|
46 from initial speed s1 without ever stopping at a plateau: |
|
47 |
|
48 Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] |
|
49 di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() |
|
50 |
|
51 IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) |
|
52 */ |
|
53 |
|
54 #include "Marlin.h" |
|
55 #include "planner.h" |
|
56 #include "stepper.h" |
|
57 #include "temperature.h" |
|
58 #include "ultralcd.h" |
|
59 #include "language.h" |
|
60 #include "led.h" |
|
61 |
|
62 //=========================================================================== |
|
63 //=============================public variables ============================ |
|
64 //=========================================================================== |
|
65 |
|
66 unsigned long minsegmenttime; |
|
67 float max_feedrate[4]; // set the max speeds |
|
68 float axis_steps_per_unit[4]; |
|
69 unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software |
|
70 float minimumfeedrate; |
|
71 float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX |
|
72 float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX |
|
73 float max_xy_jerk; //speed than can be stopped at once, if i understand correctly. |
|
74 float max_z_jerk; |
|
75 float max_e_jerk; |
|
76 float mintravelfeedrate; |
|
77 unsigned long axis_steps_per_sqr_second[NUM_AXIS]; |
|
78 |
|
79 // The current position of the tool in absolute steps |
|
80 long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode |
|
81 static float previous_speed[4]; // Speed of previous path line segment |
|
82 static float previous_nominal_speed; // Nominal speed of previous path line segment |
|
83 |
|
84 extern volatile int extrudemultiply; // Sets extrude multiply factor (in percent) |
|
85 |
|
86 #ifdef AUTOTEMP |
|
87 float autotemp_max=250; |
|
88 float autotemp_min=210; |
|
89 float autotemp_factor=0.1; |
|
90 bool autotemp_enabled=false; |
|
91 #endif |
|
92 |
|
93 //=========================================================================== |
|
94 //=================semi-private variables, used in inline functions ===== |
|
95 //=========================================================================== |
|
96 block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions |
|
97 volatile unsigned char block_buffer_head; // Index of the next block to be pushed |
|
98 volatile unsigned char block_buffer_tail; // Index of the block to process now |
|
99 |
|
100 //=========================================================================== |
|
101 //=============================private variables ============================ |
|
102 //=========================================================================== |
|
103 #ifdef PREVENT_DANGEROUS_EXTRUDE |
|
104 bool allow_cold_extrude=false; |
|
105 #endif |
|
106 #ifdef XY_FREQUENCY_LIMIT |
|
107 // Used for the frequency limit |
|
108 static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations |
|
109 static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations |
|
110 static long y_segment_time[3]={0,0,0}; |
|
111 #endif |
|
112 |
|
113 // Returns the index of the next block in the ring buffer |
|
114 // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication. |
|
115 static int8_t next_block_index(int8_t block_index) { |
|
116 block_index++; |
|
117 if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; } |
|
118 return(block_index); |
|
119 } |
|
120 |
|
121 |
|
122 // Returns the index of the previous block in the ring buffer |
|
123 static int8_t prev_block_index(int8_t block_index) { |
|
124 if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; } |
|
125 block_index--; |
|
126 return(block_index); |
|
127 } |
|
128 |
|
129 //=========================================================================== |
|
130 //=============================functions ============================ |
|
131 //=========================================================================== |
|
132 |
|
133 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the |
|
134 // given acceleration: |
|
135 FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) |
|
136 { |
|
137 if (acceleration!=0) { |
|
138 return((target_rate*target_rate-initial_rate*initial_rate)/ |
|
139 (2.0*acceleration)); |
|
140 } |
|
141 else { |
|
142 return 0.0; // acceleration was 0, set acceleration distance to 0 |
|
143 } |
|
144 } |
|
145 |
|
146 // This function gives you the point at which you must start braking (at the rate of -acceleration) if |
|
147 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after |
|
148 // a total travel of distance. This can be used to compute the intersection point between acceleration and |
|
149 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) |
|
150 |
|
151 FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) |
|
152 { |
|
153 if (acceleration!=0) { |
|
154 return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/ |
|
155 (4.0*acceleration) ); |
|
156 } |
|
157 else { |
|
158 return 0.0; // acceleration was 0, set intersection distance to 0 |
|
159 } |
|
160 } |
|
161 |
|
162 // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. |
|
163 |
|
164 void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) { |
|
165 unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min) |
|
166 unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min) |
|
167 |
|
168 // Limit minimal step rate (Otherwise the timer will overflow.) |
|
169 if(initial_rate <120) {initial_rate=120; } |
|
170 if(final_rate < 120) {final_rate=120; } |
|
171 |
|
172 long acceleration = block->acceleration_st; |
|
173 int32_t accelerate_steps = |
|
174 ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration)); |
|
175 int32_t decelerate_steps = |
|
176 floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration)); |
|
177 |
|
178 // Calculate the size of Plateau of Nominal Rate. |
|
179 int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps; |
|
180 |
|
181 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will |
|
182 // have to use intersection_distance() to calculate when to abort acceleration and start braking |
|
183 // in order to reach the final_rate exactly at the end of this block. |
|
184 if (plateau_steps < 0) { |
|
185 accelerate_steps = ceil( |
|
186 intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count)); |
|
187 accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off |
|
188 accelerate_steps = min(accelerate_steps,block->step_event_count); |
|
189 plateau_steps = 0; |
|
190 } |
|
191 |
|
192 #ifdef ADVANCE |
|
193 volatile long initial_advance = block->advance*entry_factor*entry_factor; |
|
194 volatile long final_advance = block->advance*exit_factor*exit_factor; |
|
195 #endif // ADVANCE |
|
196 |
|
197 // block->accelerate_until = accelerate_steps; |
|
198 // block->decelerate_after = accelerate_steps+plateau_steps; |
|
199 CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section |
|
200 if(block->busy == false) { // Don't update variables if block is busy. |
|
201 block->accelerate_until = accelerate_steps; |
|
202 block->decelerate_after = accelerate_steps+plateau_steps; |
|
203 block->initial_rate = initial_rate; |
|
204 block->final_rate = final_rate; |
|
205 #ifdef ADVANCE |
|
206 block->initial_advance = initial_advance; |
|
207 block->final_advance = final_advance; |
|
208 #endif //ADVANCE |
|
209 } |
|
210 CRITICAL_SECTION_END; |
|
211 } |
|
212 |
|
213 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the |
|
214 // acceleration within the allotted distance. |
|
215 FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) { |
|
216 return sqrt(target_velocity*target_velocity-2*acceleration*distance); |
|
217 } |
|
218 |
|
219 // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. |
|
220 // This method will calculate the junction jerk as the euclidean distance between the nominal |
|
221 // velocities of the respective blocks. |
|
222 //inline float junction_jerk(block_t *before, block_t *after) { |
|
223 // return sqrt( |
|
224 // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2)); |
|
225 //} |
|
226 |
|
227 |
|
228 // The kernel called by planner_recalculate() when scanning the plan from last to first entry. |
|
229 void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { |
|
230 if(!current) { return; } |
|
231 |
|
232 if (next) { |
|
233 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. |
|
234 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and |
|
235 // check for maximum allowable speed reductions to ensure maximum possible planned speed. |
|
236 if (current->entry_speed != current->max_entry_speed) { |
|
237 |
|
238 // If nominal length true, max junction speed is guaranteed to be reached. Only compute |
|
239 // for max allowable speed if block is decelerating and nominal length is false. |
|
240 if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) { |
|
241 current->entry_speed = min( current->max_entry_speed, |
|
242 max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters)); |
|
243 } else { |
|
244 current->entry_speed = current->max_entry_speed; |
|
245 } |
|
246 current->recalculate_flag = true; |
|
247 |
|
248 } |
|
249 } // Skip last block. Already initialized and set for recalculation. |
|
250 } |
|
251 |
|
252 // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This |
|
253 // implements the reverse pass. |
|
254 void planner_reverse_pass() { |
|
255 uint8_t block_index = block_buffer_head; |
|
256 if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) { |
|
257 block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1); |
|
258 block_t *block[3] = { NULL, NULL, NULL }; |
|
259 while(block_index != block_buffer_tail) { |
|
260 block_index = prev_block_index(block_index); |
|
261 block[2]= block[1]; |
|
262 block[1]= block[0]; |
|
263 block[0] = &block_buffer[block_index]; |
|
264 planner_reverse_pass_kernel(block[0], block[1], block[2]); |
|
265 } |
|
266 } |
|
267 } |
|
268 |
|
269 // The kernel called by planner_recalculate() when scanning the plan from first to last entry. |
|
270 void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { |
|
271 if(!previous) { return; } |
|
272 |
|
273 // If the previous block is an acceleration block, but it is not long enough to complete the |
|
274 // full speed change within the block, we need to adjust the entry speed accordingly. Entry |
|
275 // speeds have already been reset, maximized, and reverse planned by reverse planner. |
|
276 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. |
|
277 if (!previous->nominal_length_flag) { |
|
278 if (previous->entry_speed < current->entry_speed) { |
|
279 double entry_speed = min( current->entry_speed, |
|
280 max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) ); |
|
281 |
|
282 // Check for junction speed change |
|
283 if (current->entry_speed != entry_speed) { |
|
284 current->entry_speed = entry_speed; |
|
285 current->recalculate_flag = true; |
|
286 } |
|
287 } |
|
288 } |
|
289 } |
|
290 |
|
291 // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This |
|
292 // implements the forward pass. |
|
293 void planner_forward_pass() { |
|
294 uint8_t block_index = block_buffer_tail; |
|
295 block_t *block[3] = { NULL, NULL, NULL }; |
|
296 |
|
297 while(block_index != block_buffer_head) { |
|
298 block[0] = block[1]; |
|
299 block[1] = block[2]; |
|
300 block[2] = &block_buffer[block_index]; |
|
301 planner_forward_pass_kernel(block[0],block[1],block[2]); |
|
302 block_index = next_block_index(block_index); |
|
303 } |
|
304 planner_forward_pass_kernel(block[1], block[2], NULL); |
|
305 } |
|
306 |
|
307 // Recalculates the trapezoid speed profiles for all blocks in the plan according to the |
|
308 // entry_factor for each junction. Must be called by planner_recalculate() after |
|
309 // updating the blocks. |
|
310 void planner_recalculate_trapezoids() { |
|
311 int8_t block_index = block_buffer_tail; |
|
312 block_t *current; |
|
313 block_t *next = NULL; |
|
314 |
|
315 while(block_index != block_buffer_head) { |
|
316 current = next; |
|
317 next = &block_buffer[block_index]; |
|
318 if (current) { |
|
319 // Recalculate if current block entry or exit junction speed has changed. |
|
320 if (current->recalculate_flag || next->recalculate_flag) { |
|
321 // NOTE: Entry and exit factors always > 0 by all previous logic operations. |
|
322 calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed, |
|
323 next->entry_speed/current->nominal_speed); |
|
324 current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed |
|
325 } |
|
326 } |
|
327 block_index = next_block_index( block_index ); |
|
328 } |
|
329 // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. |
|
330 if(next != NULL) { |
|
331 calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed, |
|
332 MINIMUM_PLANNER_SPEED/next->nominal_speed); |
|
333 next->recalculate_flag = false; |
|
334 } |
|
335 } |
|
336 |
|
337 // Recalculates the motion plan according to the following algorithm: |
|
338 // |
|
339 // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) |
|
340 // so that: |
|
341 // a. The junction jerk is within the set limit |
|
342 // b. No speed reduction within one block requires faster deceleration than the one, true constant |
|
343 // acceleration. |
|
344 // 2. Go over every block in chronological order and dial down junction speed reduction values if |
|
345 // a. The speed increase within one block would require faster accelleration than the one, true |
|
346 // constant acceleration. |
|
347 // |
|
348 // When these stages are complete all blocks have an entry_factor that will allow all speed changes to |
|
349 // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than |
|
350 // the set limit. Finally it will: |
|
351 // |
|
352 // 3. Recalculate trapezoids for all blocks. |
|
353 |
|
354 void planner_recalculate() { |
|
355 planner_reverse_pass(); |
|
356 planner_forward_pass(); |
|
357 planner_recalculate_trapezoids(); |
|
358 } |
|
359 |
|
360 void plan_init() { |
|
361 block_buffer_head = 0; |
|
362 block_buffer_tail = 0; |
|
363 memset(position, 0, sizeof(position)); // clear position |
|
364 previous_speed[0] = 0.0; |
|
365 previous_speed[1] = 0.0; |
|
366 previous_speed[2] = 0.0; |
|
367 previous_speed[3] = 0.0; |
|
368 previous_nominal_speed = 0.0; |
|
369 } |
|
370 |
|
371 |
|
372 |
|
373 |
|
374 #ifdef AUTOTEMP |
|
375 void getHighESpeed() |
|
376 { |
|
377 static float oldt=0; |
|
378 if(!autotemp_enabled){ |
|
379 return; |
|
380 } |
|
381 if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero. |
|
382 return; //do nothing |
|
383 } |
|
384 |
|
385 float high=0.0; |
|
386 uint8_t block_index = block_buffer_tail; |
|
387 |
|
388 while(block_index != block_buffer_head) { |
|
389 if((block_buffer[block_index].steps_x != 0) || |
|
390 (block_buffer[block_index].steps_y != 0) || |
|
391 (block_buffer[block_index].steps_z != 0)) { |
|
392 float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed; |
|
393 //se; mm/sec; |
|
394 if(se>high) |
|
395 { |
|
396 high=se; |
|
397 } |
|
398 } |
|
399 block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); |
|
400 } |
|
401 |
|
402 float g=autotemp_min+high*autotemp_factor; |
|
403 float t=g; |
|
404 if(t<autotemp_min) |
|
405 t=autotemp_min; |
|
406 if(t>autotemp_max) |
|
407 t=autotemp_max; |
|
408 if(oldt>t) |
|
409 { |
|
410 t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t; |
|
411 } |
|
412 oldt=t; |
|
413 setTargetHotend0(t); |
|
414 } |
|
415 #endif |
|
416 |
|
417 void check_axes_activity() { |
|
418 unsigned char x_active = 0; |
|
419 unsigned char y_active = 0; |
|
420 unsigned char z_active = 0; |
|
421 unsigned char e_active = 0; |
|
422 unsigned char fan_speed = 0; |
|
423 unsigned char tail_fan_speed = 0; |
|
424 block_t *block; |
|
425 |
|
426 if(block_buffer_tail != block_buffer_head) { |
|
427 uint8_t block_index = block_buffer_tail; |
|
428 tail_fan_speed = block_buffer[block_index].fan_speed; |
|
429 while(block_index != block_buffer_head) { |
|
430 block = &block_buffer[block_index]; |
|
431 if(block->steps_x != 0) x_active++; |
|
432 if(block->steps_y != 0) y_active++; |
|
433 if(block->steps_z != 0) z_active++; |
|
434 if(block->steps_e != 0) e_active++; |
|
435 if(block->fan_speed != 0) fan_speed++; |
|
436 block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); |
|
437 } |
|
438 } |
|
439 else { |
|
440 #if FAN_PIN > -1 |
|
441 if (FanSpeed != 0) analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed |
|
442 #endif |
|
443 } |
|
444 if((DISABLE_X) && (x_active == 0)) disable_x(); |
|
445 if((DISABLE_Y) && (y_active == 0)) disable_y(); |
|
446 if((DISABLE_Z) && (z_active == 0)) disable_z(); |
|
447 if((DISABLE_E) && (e_active == 0)) { disable_e0();disable_e1();disable_e2(); } |
|
448 #if FAN_PIN > -1 |
|
449 if((FanSpeed == 0) && (fan_speed ==0)) analogWrite(FAN_PIN, 0); |
|
450 #endif |
|
451 if (FanSpeed != 0 && tail_fan_speed !=0) { |
|
452 analogWrite(FAN_PIN,tail_fan_speed); |
|
453 } |
|
454 } |
|
455 |
|
456 |
|
457 float junction_deviation = 0.1; |
|
458 // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in |
|
459 // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration |
|
460 // calculation the caller must also provide the physical length of the line in millimeters. |
|
461 void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder) |
|
462 { |
|
463 // Calculate the buffer head after we push this byte |
|
464 int next_buffer_head = next_block_index(block_buffer_head); |
|
465 |
|
466 // If the buffer is full: good! That means we are well ahead of the robot. |
|
467 // Rest here until there is room in the buffer. |
|
468 while(block_buffer_tail == next_buffer_head) { |
|
469 manage_heater(); |
|
470 manage_inactivity(1); |
|
471 LCD_STATUS; |
|
472 LED_STATUS; |
|
473 } |
|
474 |
|
475 // The target position of the tool in absolute steps |
|
476 // Calculate target position in absolute steps |
|
477 //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow |
|
478 long target[4]; |
|
479 target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); |
|
480 target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); |
|
481 target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); |
|
482 target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); |
|
483 |
|
484 #ifdef PREVENT_DANGEROUS_EXTRUDE |
|
485 if(target[E_AXIS]!=position[E_AXIS]) |
|
486 if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude) |
|
487 { |
|
488 position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part |
|
489 SERIAL_ECHO_START; |
|
490 SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); |
|
491 } |
|
492 if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH) |
|
493 { |
|
494 position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part |
|
495 SERIAL_ECHO_START; |
|
496 SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); |
|
497 } |
|
498 #endif |
|
499 |
|
500 // Prepare to set up new block |
|
501 block_t *block = &block_buffer[block_buffer_head]; |
|
502 |
|
503 // Mark block as not busy (Not executed by the stepper interrupt) |
|
504 block->busy = false; |
|
505 |
|
506 // Number of steps for each axis |
|
507 block->steps_x = labs(target[X_AXIS]-position[X_AXIS]); |
|
508 block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]); |
|
509 block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]); |
|
510 block->steps_e = labs(target[E_AXIS]-position[E_AXIS]); |
|
511 block->steps_e *= extrudemultiply; |
|
512 block->steps_e /= 100; |
|
513 block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); |
|
514 |
|
515 // Bail if this is a zero-length block |
|
516 if (block->step_event_count <= dropsegments) { return; }; |
|
517 |
|
518 block->fan_speed = FanSpeed; |
|
519 |
|
520 // Compute direction bits for this block |
|
521 block->direction_bits = 0; |
|
522 if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); } |
|
523 if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); } |
|
524 if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); } |
|
525 if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); } |
|
526 |
|
527 block->active_extruder = extruder; |
|
528 |
|
529 //enable active axes |
|
530 if(block->steps_x != 0) enable_x(); |
|
531 if(block->steps_y != 0) enable_y(); |
|
532 #ifndef Z_LATE_ENABLE |
|
533 if(block->steps_z != 0) enable_z(); |
|
534 #endif |
|
535 |
|
536 // Enable all |
|
537 // N571 disables real E drive! (ie. on laser operations) |
|
538 if (!n571_enabled) { |
|
539 if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); } |
|
540 } |
|
541 |
|
542 if (block->steps_e == 0) { |
|
543 if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate; |
|
544 } |
|
545 else { |
|
546 if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate; |
|
547 } |
|
548 |
|
549 float delta_mm[4]; |
|
550 delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; |
|
551 delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; |
|
552 delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]; |
|
553 delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0; |
|
554 // if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) { |
|
555 // block->millimeters = abs(delta_mm[E_AXIS]); |
|
556 // } else { |
|
557 // block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); |
|
558 // } |
|
559 |
|
560 // TODO - JMG - SORT OUT RETRACTS WHEN e IS NOT ALONE |
|
561 block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + |
|
562 square(delta_mm[Z_AXIS]) + square(delta_mm[E_AXIS])); |
|
563 float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides |
|
564 |
|
565 // Calculate speed in mm/second for each axis. No divide by zero due to previous checks. |
|
566 float inverse_second = feed_rate * inverse_millimeters; |
|
567 |
|
568 int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); |
|
569 |
|
570 // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill |
|
571 #ifdef OLD_SLOWDOWN |
|
572 if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); |
|
573 #endif |
|
574 |
|
575 #ifdef SLOWDOWN |
|
576 // segment time im micro seconds |
|
577 unsigned long segment_time = lround(1000000.0/inverse_second); |
|
578 if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) { |
|
579 if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. |
|
580 inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued)); |
|
581 } |
|
582 } |
|
583 #endif |
|
584 // END OF SLOW DOWN SECTION |
|
585 |
|
586 |
|
587 block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0 |
|
588 block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0 |
|
589 |
|
590 // Calculate and limit speed in mm/sec for each axis |
|
591 float current_speed[4]; |
|
592 float speed_factor = 1.0; //factor <=1 do decrease speed |
|
593 for(int i=0; i < 4; i++) { |
|
594 current_speed[i] = delta_mm[i] * inverse_second; |
|
595 if(fabs(current_speed[i]) > max_feedrate[i]) |
|
596 speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i])); |
|
597 } |
|
598 |
|
599 // Max segement time in us. |
|
600 #ifdef XY_FREQUENCY_LIMIT |
|
601 #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) |
|
602 |
|
603 // Check and limit the xy direction change frequency |
|
604 unsigned char direction_change = block->direction_bits ^ old_direction_bits; |
|
605 old_direction_bits = block->direction_bits; |
|
606 |
|
607 if((direction_change & (1<<X_AXIS)) == 0) { |
|
608 x_segment_time[0] += segment_time; |
|
609 } |
|
610 else { |
|
611 x_segment_time[2] = x_segment_time[1]; |
|
612 x_segment_time[1] = x_segment_time[0]; |
|
613 x_segment_time[0] = segment_time; |
|
614 } |
|
615 if((direction_change & (1<<Y_AXIS)) == 0) { |
|
616 y_segment_time[0] += segment_time; |
|
617 } |
|
618 else { |
|
619 y_segment_time[2] = y_segment_time[1]; |
|
620 y_segment_time[1] = y_segment_time[0]; |
|
621 y_segment_time[0] = segment_time; |
|
622 } |
|
623 long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2])); |
|
624 long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2])); |
|
625 long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time); |
|
626 if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME); |
|
627 #endif |
|
628 |
|
629 // Correct the speed |
|
630 if( speed_factor < 1.0) { |
|
631 for(unsigned char i=0; i < 4; i++) { |
|
632 current_speed[i] *= speed_factor; |
|
633 } |
|
634 block->nominal_speed *= speed_factor; |
|
635 block->nominal_rate *= speed_factor; |
|
636 } |
|
637 |
|
638 // Compute and limit the acceleration rate for the trapezoid generator. |
|
639 float steps_per_mm = block->step_event_count/block->millimeters; |
|
640 if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) { |
|
641 block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 |
|
642 } |
|
643 else { |
|
644 block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 |
|
645 // Limit acceleration per axis |
|
646 if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS]) |
|
647 block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; |
|
648 if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS]) |
|
649 block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; |
|
650 if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS]) |
|
651 block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; |
|
652 if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS]) |
|
653 block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; |
|
654 } |
|
655 block->acceleration = block->acceleration_st / steps_per_mm; |
|
656 block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608); |
|
657 |
|
658 #if 0 // Use old jerk for now |
|
659 // Compute path unit vector |
|
660 double unit_vec[3]; |
|
661 |
|
662 unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters; |
|
663 unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters; |
|
664 unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters; |
|
665 |
|
666 // Compute maximum allowable entry speed at junction by centripetal acceleration approximation. |
|
667 // Let a circle be tangent to both previous and current path line segments, where the junction |
|
668 // deviation is defined as the distance from the junction to the closest edge of the circle, |
|
669 // colinear with the circle center. The circular segment joining the two paths represents the |
|
670 // path of centripetal acceleration. Solve for max velocity based on max acceleration about the |
|
671 // radius of the circle, defined indirectly by junction deviation. This may be also viewed as |
|
672 // path width or max_jerk in the previous grbl version. This approach does not actually deviate |
|
673 // from path, but used as a robust way to compute cornering speeds, as it takes into account the |
|
674 // nonlinearities of both the junction angle and junction velocity. |
|
675 double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed |
|
676 |
|
677 // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. |
|
678 if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) { |
|
679 // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) |
|
680 // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. |
|
681 double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] |
|
682 - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] |
|
683 - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; |
|
684 |
|
685 // Skip and use default max junction speed for 0 degree acute junction. |
|
686 if (cos_theta < 0.95) { |
|
687 vmax_junction = min(previous_nominal_speed,block->nominal_speed); |
|
688 // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds. |
|
689 if (cos_theta > -0.95) { |
|
690 // Compute maximum junction velocity based on maximum acceleration and junction deviation |
|
691 double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive. |
|
692 vmax_junction = min(vmax_junction, |
|
693 sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) ); |
|
694 } |
|
695 } |
|
696 } |
|
697 #endif |
|
698 // Start with a safe speed |
|
699 float vmax_junction = max_xy_jerk/2; |
|
700 if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) |
|
701 vmax_junction = max_z_jerk/2; |
|
702 vmax_junction = min(vmax_junction, block->nominal_speed); |
|
703 if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) |
|
704 vmax_junction = min(vmax_junction, max_e_jerk/2); |
|
705 |
|
706 if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) { |
|
707 float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2)); |
|
708 if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { |
|
709 vmax_junction = block->nominal_speed; |
|
710 } |
|
711 if (jerk > max_xy_jerk) { |
|
712 vmax_junction *= (max_xy_jerk/jerk); |
|
713 } |
|
714 if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) { |
|
715 vmax_junction *= (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])); |
|
716 } |
|
717 if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) { |
|
718 vmax_junction *= (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])); |
|
719 } |
|
720 } |
|
721 block->max_entry_speed = vmax_junction; |
|
722 |
|
723 // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. |
|
724 double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters); |
|
725 block->entry_speed = min(vmax_junction, v_allowable); |
|
726 |
|
727 // Initialize planner efficiency flags |
|
728 // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. |
|
729 // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then |
|
730 // the current block and next block junction speeds are guaranteed to always be at their maximum |
|
731 // junction speeds in deceleration and acceleration, respectively. This is due to how the current |
|
732 // block nominal speed limits both the current and next maximum junction speeds. Hence, in both |
|
733 // the reverse and forward planners, the corresponding block junction speed will always be at the |
|
734 // the maximum junction speed and may always be ignored for any speed reduction checks. |
|
735 if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; } |
|
736 else { block->nominal_length_flag = false; } |
|
737 block->recalculate_flag = true; // Always calculate trapezoid for new block |
|
738 |
|
739 // Update previous path unit_vector and nominal speed |
|
740 memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[] |
|
741 previous_nominal_speed = block->nominal_speed; |
|
742 |
|
743 |
|
744 #ifdef ADVANCE |
|
745 // Calculate advance rate |
|
746 if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) { |
|
747 block->advance_rate = 0; |
|
748 block->advance = 0; |
|
749 } |
|
750 else { |
|
751 long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); |
|
752 float advance = (STEPS_PER_CUBIC_MM_E * advance_k) * |
|
753 (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256; |
|
754 block->advance = advance; |
|
755 if(acc_dist == 0) { |
|
756 block->advance_rate = 0; |
|
757 } |
|
758 else { |
|
759 block->advance_rate = advance / (float)acc_dist; |
|
760 } |
|
761 } |
|
762 /* |
|
763 SERIAL_ECHO_START; |
|
764 SERIAL_ECHOPGM("advance :"); |
|
765 SERIAL_ECHO(block->advance/256.0); |
|
766 SERIAL_ECHOPGM("advance rate :"); |
|
767 SERIAL_ECHOLN(block->advance_rate/256.0); |
|
768 */ |
|
769 #endif // ADVANCE |
|
770 |
|
771 calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed, |
|
772 MINIMUM_PLANNER_SPEED/block->nominal_speed); |
|
773 |
|
774 // Move buffer head |
|
775 block_buffer_head = next_buffer_head; |
|
776 |
|
777 // Update position |
|
778 memcpy(position, target, sizeof(target)); // position[] = target[] |
|
779 |
|
780 planner_recalculate(); |
|
781 |
|
782 st_wake_up(); |
|
783 } |
|
784 |
|
785 void plan_set_position(const float &x, const float &y, const float &z, const float &e) |
|
786 { |
|
787 position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); |
|
788 position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); |
|
789 position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); |
|
790 position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); |
|
791 st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]); |
|
792 previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. |
|
793 previous_speed[0] = 0.0; |
|
794 previous_speed[1] = 0.0; |
|
795 previous_speed[2] = 0.0; |
|
796 previous_speed[3] = 0.0; |
|
797 } |
|
798 |
|
799 void plan_set_e_position(const float &e) |
|
800 { |
|
801 position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); |
|
802 st_set_e_position(position[E_AXIS]); |
|
803 } |
|
804 |
|
805 uint8_t movesplanned() |
|
806 { |
|
807 return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); |
|
808 } |
|
809 |
|
810 void allow_cold_extrudes(bool allow) |
|
811 { |
|
812 #ifdef PREVENT_DANGEROUS_EXTRUDE |
|
813 allow_cold_extrude=allow; |
|
814 #endif |
|
815 } |