Fri, 17 Nov 2017 10:13:31 +0100
proper configuration, homing and planner optimization
0 | 1 | /* |
2 | planner.c - buffers movement commands and manages the acceleration profile plan | |
3 | Part of Grbl | |
4 | ||
5 | Copyright (c) 2009-2011 Simen Svale Skogsrud | |
6 | ||
7 | Grbl is free software: you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation, either version 3 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | Grbl is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with Grbl. If not, see <http://www.gnu.org/licenses/>. | |
19 | */ | |
20 | ||
21 | /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */ | |
22 | ||
23 | /* | |
24 | Reasoning behind the mathematics in this module (in the key of 'Mathematica'): | |
25 | ||
26 | s == speed, a == acceleration, t == time, d == distance | |
27 | ||
28 | Basic definitions: | |
29 | ||
30 | Speed[s_, a_, t_] := s + (a*t) | |
31 | Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] | |
32 | ||
33 | Distance to reach a specific speed with a constant acceleration: | |
34 | ||
35 | Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] | |
36 | d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() | |
37 | ||
38 | Speed after a given distance of travel with constant acceleration: | |
39 | ||
40 | Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] | |
41 | m -> Sqrt[2 a d + s^2] | |
42 | ||
43 | DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] | |
44 | ||
45 | When to start braking (di) to reach a specified destionation speed (s2) after accelerating | |
46 | from initial speed s1 without ever stopping at a plateau: | |
47 | ||
48 | Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] | |
49 | di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() | |
50 | ||
51 | IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) | |
52 | */ | |
53 | ||
54 | #include "Marlin.h" | |
55 | #include "planner.h" | |
56 | #include "stepper.h" | |
57 | #include "temperature.h" | |
58 | #include "ultralcd.h" | |
59 | #include "language.h" | |
60 | #include "led.h" | |
61 | ||
62 | //=========================================================================== | |
63 | //=============================public variables ============================ | |
64 | //=========================================================================== | |
65 | ||
66 | unsigned long minsegmenttime; | |
67 | float max_feedrate[4]; // set the max speeds | |
68 | float axis_steps_per_unit[4]; | |
69 | unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software | |
70 | float minimumfeedrate; | |
71 | float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX | |
72 | float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX | |
73 | float max_xy_jerk; //speed than can be stopped at once, if i understand correctly. | |
74 | float max_z_jerk; | |
75 | float max_e_jerk; | |
76 | float mintravelfeedrate; | |
77 | unsigned long axis_steps_per_sqr_second[NUM_AXIS]; | |
78 | ||
79 | // The current position of the tool in absolute steps | |
80 | long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode | |
81 | static float previous_speed[4]; // Speed of previous path line segment | |
82 | static float previous_nominal_speed; // Nominal speed of previous path line segment | |
83 | ||
84 | extern volatile int extrudemultiply; // Sets extrude multiply factor (in percent) | |
85 | ||
86 | #ifdef AUTOTEMP | |
87 | float autotemp_max=250; | |
88 | float autotemp_min=210; | |
89 | float autotemp_factor=0.1; | |
90 | bool autotemp_enabled=false; | |
91 | #endif | |
92 | ||
93 | //=========================================================================== | |
94 | //=================semi-private variables, used in inline functions ===== | |
95 | //=========================================================================== | |
96 | block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions | |
97 | volatile unsigned char block_buffer_head; // Index of the next block to be pushed | |
98 | volatile unsigned char block_buffer_tail; // Index of the block to process now | |
99 | ||
100 | //=========================================================================== | |
101 | //=============================private variables ============================ | |
102 | //=========================================================================== | |
103 | #ifdef PREVENT_DANGEROUS_EXTRUDE | |
104 | bool allow_cold_extrude=false; | |
105 | #endif | |
106 | #ifdef XY_FREQUENCY_LIMIT | |
107 | // Used for the frequency limit | |
108 | static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations | |
109 | static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations | |
110 | static long y_segment_time[3]={0,0,0}; | |
111 | #endif | |
112 | ||
113 | // Returns the index of the next block in the ring buffer | |
114 | // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication. | |
115 | static int8_t next_block_index(int8_t block_index) { | |
116 | block_index++; | |
117 | if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; } | |
118 | return(block_index); | |
119 | } | |
120 | ||
121 | ||
122 | // Returns the index of the previous block in the ring buffer | |
123 | static int8_t prev_block_index(int8_t block_index) { | |
124 | if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; } | |
125 | block_index--; | |
126 | return(block_index); | |
127 | } | |
128 | ||
129 | //=========================================================================== | |
130 | //=============================functions ============================ | |
131 | //=========================================================================== | |
132 | ||
133 | // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the | |
134 | // given acceleration: | |
135 | FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) | |
136 | { | |
137 | if (acceleration!=0) { | |
138 | return((target_rate*target_rate-initial_rate*initial_rate)/ | |
139 | (2.0*acceleration)); | |
140 | } | |
141 | else { | |
142 | return 0.0; // acceleration was 0, set acceleration distance to 0 | |
143 | } | |
144 | } | |
145 | ||
146 | // This function gives you the point at which you must start braking (at the rate of -acceleration) if | |
147 | // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after | |
148 | // a total travel of distance. This can be used to compute the intersection point between acceleration and | |
149 | // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) | |
150 | ||
151 | FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) | |
152 | { | |
153 | if (acceleration!=0) { | |
154 | return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/ | |
155 | (4.0*acceleration) ); | |
156 | } | |
157 | else { | |
158 | return 0.0; // acceleration was 0, set intersection distance to 0 | |
159 | } | |
160 | } | |
161 | ||
162 | // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. | |
163 | ||
164 | void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) { | |
165 | unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min) | |
166 | unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min) | |
167 | ||
168 | // Limit minimal step rate (Otherwise the timer will overflow.) | |
169 | if(initial_rate <120) {initial_rate=120; } | |
170 | if(final_rate < 120) {final_rate=120; } | |
171 | ||
172 | long acceleration = block->acceleration_st; | |
173 | int32_t accelerate_steps = | |
174 | ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration)); | |
175 | int32_t decelerate_steps = | |
176 | floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration)); | |
177 | ||
178 | // Calculate the size of Plateau of Nominal Rate. | |
179 | int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps; | |
180 | ||
181 | // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will | |
182 | // have to use intersection_distance() to calculate when to abort acceleration and start braking | |
183 | // in order to reach the final_rate exactly at the end of this block. | |
184 | if (plateau_steps < 0) { | |
185 | accelerate_steps = ceil( | |
186 | intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count)); | |
187 | accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off | |
188 | accelerate_steps = min(accelerate_steps,block->step_event_count); | |
189 | plateau_steps = 0; | |
190 | } | |
191 | ||
192 | #ifdef ADVANCE | |
193 | volatile long initial_advance = block->advance*entry_factor*entry_factor; | |
194 | volatile long final_advance = block->advance*exit_factor*exit_factor; | |
195 | #endif // ADVANCE | |
196 | ||
197 | // block->accelerate_until = accelerate_steps; | |
198 | // block->decelerate_after = accelerate_steps+plateau_steps; | |
199 | CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section | |
200 | if(block->busy == false) { // Don't update variables if block is busy. | |
201 | block->accelerate_until = accelerate_steps; | |
202 | block->decelerate_after = accelerate_steps+plateau_steps; | |
203 | block->initial_rate = initial_rate; | |
204 | block->final_rate = final_rate; | |
205 | #ifdef ADVANCE | |
206 | block->initial_advance = initial_advance; | |
207 | block->final_advance = final_advance; | |
208 | #endif //ADVANCE | |
209 | } | |
210 | CRITICAL_SECTION_END; | |
211 | } | |
212 | ||
213 | // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the | |
214 | // acceleration within the allotted distance. | |
215 | FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) { | |
216 | return sqrt(target_velocity*target_velocity-2*acceleration*distance); | |
217 | } | |
218 | ||
219 | // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. | |
220 | // This method will calculate the junction jerk as the euclidean distance between the nominal | |
221 | // velocities of the respective blocks. | |
222 | //inline float junction_jerk(block_t *before, block_t *after) { | |
223 | // return sqrt( | |
224 | // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2)); | |
225 | //} | |
226 | ||
227 | ||
228 | // The kernel called by planner_recalculate() when scanning the plan from last to first entry. | |
229 | void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { | |
230 | if(!current) { return; } | |
231 | ||
232 | if (next) { | |
233 | // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. | |
234 | // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and | |
235 | // check for maximum allowable speed reductions to ensure maximum possible planned speed. | |
236 | if (current->entry_speed != current->max_entry_speed) { | |
237 | ||
238 | // If nominal length true, max junction speed is guaranteed to be reached. Only compute | |
239 | // for max allowable speed if block is decelerating and nominal length is false. | |
240 | if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) { | |
241 | current->entry_speed = min( current->max_entry_speed, | |
242 | max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters)); | |
243 | } else { | |
244 | current->entry_speed = current->max_entry_speed; | |
245 | } | |
246 | current->recalculate_flag = true; | |
247 | ||
248 | } | |
249 | } // Skip last block. Already initialized and set for recalculation. | |
250 | } | |
251 | ||
252 | // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This | |
253 | // implements the reverse pass. | |
254 | void planner_reverse_pass() { | |
255 | uint8_t block_index = block_buffer_head; | |
256 | if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) { | |
257 | block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1); | |
258 | block_t *block[3] = { NULL, NULL, NULL }; | |
259 | while(block_index != block_buffer_tail) { | |
260 | block_index = prev_block_index(block_index); | |
261 | block[2]= block[1]; | |
262 | block[1]= block[0]; | |
263 | block[0] = &block_buffer[block_index]; | |
264 | planner_reverse_pass_kernel(block[0], block[1], block[2]); | |
265 | } | |
266 | } | |
267 | } | |
268 | ||
269 | // The kernel called by planner_recalculate() when scanning the plan from first to last entry. | |
270 | void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { | |
271 | if(!previous) { return; } | |
272 | ||
273 | // If the previous block is an acceleration block, but it is not long enough to complete the | |
274 | // full speed change within the block, we need to adjust the entry speed accordingly. Entry | |
275 | // speeds have already been reset, maximized, and reverse planned by reverse planner. | |
276 | // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. | |
277 | if (!previous->nominal_length_flag) { | |
278 | if (previous->entry_speed < current->entry_speed) { | |
279 | double entry_speed = min( current->entry_speed, | |
280 | max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) ); | |
281 | ||
282 | // Check for junction speed change | |
283 | if (current->entry_speed != entry_speed) { | |
284 | current->entry_speed = entry_speed; | |
285 | current->recalculate_flag = true; | |
286 | } | |
287 | } | |
288 | } | |
289 | } | |
290 | ||
291 | // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This | |
292 | // implements the forward pass. | |
293 | void planner_forward_pass() { | |
294 | uint8_t block_index = block_buffer_tail; | |
295 | block_t *block[3] = { NULL, NULL, NULL }; | |
296 | ||
297 | while(block_index != block_buffer_head) { | |
298 | block[0] = block[1]; | |
299 | block[1] = block[2]; | |
300 | block[2] = &block_buffer[block_index]; | |
301 | planner_forward_pass_kernel(block[0],block[1],block[2]); | |
302 | block_index = next_block_index(block_index); | |
303 | } | |
304 | planner_forward_pass_kernel(block[1], block[2], NULL); | |
305 | } | |
306 | ||
307 | // Recalculates the trapezoid speed profiles for all blocks in the plan according to the | |
308 | // entry_factor for each junction. Must be called by planner_recalculate() after | |
309 | // updating the blocks. | |
310 | void planner_recalculate_trapezoids() { | |
311 | int8_t block_index = block_buffer_tail; | |
312 | block_t *current; | |
313 | block_t *next = NULL; | |
314 | ||
315 | while(block_index != block_buffer_head) { | |
316 | current = next; | |
317 | next = &block_buffer[block_index]; | |
318 | if (current) { | |
319 | // Recalculate if current block entry or exit junction speed has changed. | |
320 | if (current->recalculate_flag || next->recalculate_flag) { | |
321 | // NOTE: Entry and exit factors always > 0 by all previous logic operations. | |
322 | calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed, | |
323 | next->entry_speed/current->nominal_speed); | |
324 | current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed | |
325 | } | |
326 | } | |
327 | block_index = next_block_index( block_index ); | |
328 | } | |
329 | // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. | |
330 | if(next != NULL) { | |
331 | calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed, | |
332 | MINIMUM_PLANNER_SPEED/next->nominal_speed); | |
333 | next->recalculate_flag = false; | |
334 | } | |
335 | } | |
336 | ||
337 | // Recalculates the motion plan according to the following algorithm: | |
338 | // | |
339 | // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) | |
340 | // so that: | |
341 | // a. The junction jerk is within the set limit | |
342 | // b. No speed reduction within one block requires faster deceleration than the one, true constant | |
343 | // acceleration. | |
344 | // 2. Go over every block in chronological order and dial down junction speed reduction values if | |
345 | // a. The speed increase within one block would require faster accelleration than the one, true | |
346 | // constant acceleration. | |
347 | // | |
348 | // When these stages are complete all blocks have an entry_factor that will allow all speed changes to | |
349 | // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than | |
350 | // the set limit. Finally it will: | |
351 | // | |
352 | // 3. Recalculate trapezoids for all blocks. | |
353 | ||
354 | void planner_recalculate() { | |
355 | planner_reverse_pass(); | |
356 | planner_forward_pass(); | |
357 | planner_recalculate_trapezoids(); | |
358 | } | |
359 | ||
360 | void plan_init() { | |
361 | block_buffer_head = 0; | |
362 | block_buffer_tail = 0; | |
363 | memset(position, 0, sizeof(position)); // clear position | |
364 | previous_speed[0] = 0.0; | |
365 | previous_speed[1] = 0.0; | |
366 | previous_speed[2] = 0.0; | |
367 | previous_speed[3] = 0.0; | |
368 | previous_nominal_speed = 0.0; | |
369 | } | |
370 | ||
371 | ||
372 | ||
373 | ||
374 | #ifdef AUTOTEMP | |
375 | void getHighESpeed() | |
376 | { | |
377 | static float oldt=0; | |
378 | if(!autotemp_enabled){ | |
379 | return; | |
380 | } | |
381 | if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero. | |
382 | return; //do nothing | |
383 | } | |
384 | ||
385 | float high=0.0; | |
386 | uint8_t block_index = block_buffer_tail; | |
387 | ||
388 | while(block_index != block_buffer_head) { | |
389 | if((block_buffer[block_index].steps_x != 0) || | |
390 | (block_buffer[block_index].steps_y != 0) || | |
391 | (block_buffer[block_index].steps_z != 0)) { | |
392 | float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed; | |
393 | //se; mm/sec; | |
394 | if(se>high) | |
395 | { | |
396 | high=se; | |
397 | } | |
398 | } | |
399 | block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); | |
400 | } | |
401 | ||
402 | float g=autotemp_min+high*autotemp_factor; | |
403 | float t=g; | |
404 | if(t<autotemp_min) | |
405 | t=autotemp_min; | |
406 | if(t>autotemp_max) | |
407 | t=autotemp_max; | |
408 | if(oldt>t) | |
409 | { | |
410 | t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t; | |
411 | } | |
412 | oldt=t; | |
413 | setTargetHotend0(t); | |
414 | } | |
415 | #endif | |
416 | ||
417 | void check_axes_activity() { | |
418 | unsigned char x_active = 0; | |
419 | unsigned char y_active = 0; | |
420 | unsigned char z_active = 0; | |
421 | unsigned char e_active = 0; | |
422 | unsigned char fan_speed = 0; | |
423 | unsigned char tail_fan_speed = 0; | |
424 | block_t *block; | |
425 | ||
426 | if(block_buffer_tail != block_buffer_head) { | |
427 | uint8_t block_index = block_buffer_tail; | |
428 | tail_fan_speed = block_buffer[block_index].fan_speed; | |
429 | while(block_index != block_buffer_head) { | |
430 | block = &block_buffer[block_index]; | |
431 | if(block->steps_x != 0) x_active++; | |
432 | if(block->steps_y != 0) y_active++; | |
433 | if(block->steps_z != 0) z_active++; | |
434 | if(block->steps_e != 0) e_active++; | |
435 | if(block->fan_speed != 0) fan_speed++; | |
436 | block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); | |
437 | } | |
438 | } | |
439 | else { | |
440 | #if FAN_PIN > -1 | |
441 | if (FanSpeed != 0) analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed | |
442 | #endif | |
443 | } | |
444 | if((DISABLE_X) && (x_active == 0)) disable_x(); | |
445 | if((DISABLE_Y) && (y_active == 0)) disable_y(); | |
446 | if((DISABLE_Z) && (z_active == 0)) disable_z(); | |
447 | if((DISABLE_E) && (e_active == 0)) { disable_e0();disable_e1();disable_e2(); } | |
448 | #if FAN_PIN > -1 | |
449 | if((FanSpeed == 0) && (fan_speed ==0)) analogWrite(FAN_PIN, 0); | |
450 | #endif | |
451 | if (FanSpeed != 0 && tail_fan_speed !=0) { | |
452 | analogWrite(FAN_PIN,tail_fan_speed); | |
453 | } | |
454 | } | |
455 | ||
456 | ||
457 | float junction_deviation = 0.1; | |
458 | // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in | |
459 | // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration | |
460 | // calculation the caller must also provide the physical length of the line in millimeters. | |
1
b584642d4f58
several modifications to support laser enable - still needs cleanup
mbayer
parents:
0
diff
changeset
|
461 | void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder, bool laser_on) |
0 | 462 | { |
463 | // Calculate the buffer head after we push this byte | |
464 | int next_buffer_head = next_block_index(block_buffer_head); | |
465 | ||
466 | // If the buffer is full: good! That means we are well ahead of the robot. | |
467 | // Rest here until there is room in the buffer. | |
468 | while(block_buffer_tail == next_buffer_head) { | |
469 | manage_heater(); | |
470 | manage_inactivity(1); | |
471 | LCD_STATUS; | |
472 | LED_STATUS; | |
473 | } | |
474 | ||
475 | // The target position of the tool in absolute steps | |
476 | // Calculate target position in absolute steps | |
477 | //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow | |
478 | long target[4]; | |
479 | target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); | |
480 | target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); | |
481 | target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); | |
482 | target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); | |
483 | ||
484 | #ifdef PREVENT_DANGEROUS_EXTRUDE | |
485 | if(target[E_AXIS]!=position[E_AXIS]) | |
486 | if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude) | |
487 | { | |
488 | position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part | |
489 | SERIAL_ECHO_START; | |
490 | SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); | |
491 | } | |
492 | if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH) | |
493 | { | |
494 | position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part | |
495 | SERIAL_ECHO_START; | |
496 | SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); | |
497 | } | |
498 | #endif | |
499 | ||
500 | // Prepare to set up new block | |
501 | block_t *block = &block_buffer[block_buffer_head]; | |
502 | ||
503 | // Mark block as not busy (Not executed by the stepper interrupt) | |
504 | block->busy = false; | |
505 | ||
1
b584642d4f58
several modifications to support laser enable - still needs cleanup
mbayer
parents:
0
diff
changeset
|
506 | // set the laser output status |
b584642d4f58
several modifications to support laser enable - still needs cleanup
mbayer
parents:
0
diff
changeset
|
507 | block->laser_on = laser_on; |
b584642d4f58
several modifications to support laser enable - still needs cleanup
mbayer
parents:
0
diff
changeset
|
508 | |
0 | 509 | // Number of steps for each axis |
510 | block->steps_x = labs(target[X_AXIS]-position[X_AXIS]); | |
511 | block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]); | |
512 | block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]); | |
513 | block->steps_e = labs(target[E_AXIS]-position[E_AXIS]); | |
514 | block->steps_e *= extrudemultiply; | |
515 | block->steps_e /= 100; | |
516 | block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); | |
517 | ||
518 | // Bail if this is a zero-length block | |
519 | if (block->step_event_count <= dropsegments) { return; }; | |
520 | ||
521 | block->fan_speed = FanSpeed; | |
522 | ||
523 | // Compute direction bits for this block | |
524 | block->direction_bits = 0; | |
525 | if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); } | |
526 | if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); } | |
527 | if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); } | |
528 | if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); } | |
529 | ||
530 | block->active_extruder = extruder; | |
531 | ||
532 | //enable active axes | |
533 | if(block->steps_x != 0) enable_x(); | |
534 | if(block->steps_y != 0) enable_y(); | |
535 | #ifndef Z_LATE_ENABLE | |
536 | if(block->steps_z != 0) enable_z(); | |
537 | #endif | |
538 | ||
539 | // Enable all | |
540 | // N571 disables real E drive! (ie. on laser operations) | |
541 | if (!n571_enabled) { | |
542 | if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); } | |
543 | } | |
544 | ||
545 | if (block->steps_e == 0) { | |
546 | if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate; | |
547 | } | |
548 | else { | |
549 | if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate; | |
550 | } | |
551 | ||
552 | float delta_mm[4]; | |
553 | delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; | |
554 | delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; | |
555 | delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]; | |
556 | delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0; | |
557 | // if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) { | |
558 | // block->millimeters = abs(delta_mm[E_AXIS]); | |
559 | // } else { | |
560 | // block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); | |
561 | // } | |
562 | ||
563 | // TODO - JMG - SORT OUT RETRACTS WHEN e IS NOT ALONE | |
564 | block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + | |
565 | square(delta_mm[Z_AXIS]) + square(delta_mm[E_AXIS])); | |
566 | float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides | |
567 | ||
568 | // Calculate speed in mm/second for each axis. No divide by zero due to previous checks. | |
569 | float inverse_second = feed_rate * inverse_millimeters; | |
570 | ||
571 | int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); | |
572 | ||
573 | // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill | |
574 | #ifdef OLD_SLOWDOWN | |
575 | if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); | |
576 | #endif | |
577 | ||
578 | #ifdef SLOWDOWN | |
579 | // segment time im micro seconds | |
580 | unsigned long segment_time = lround(1000000.0/inverse_second); | |
581 | if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) { | |
582 | if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. | |
583 | inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued)); | |
584 | } | |
585 | } | |
586 | #endif | |
587 | // END OF SLOW DOWN SECTION | |
588 | ||
589 | ||
590 | block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0 | |
591 | block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0 | |
592 | ||
593 | // Calculate and limit speed in mm/sec for each axis | |
594 | float current_speed[4]; | |
595 | float speed_factor = 1.0; //factor <=1 do decrease speed | |
596 | for(int i=0; i < 4; i++) { | |
597 | current_speed[i] = delta_mm[i] * inverse_second; | |
598 | if(fabs(current_speed[i]) > max_feedrate[i]) | |
599 | speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i])); | |
600 | } | |
601 | ||
602 | // Max segement time in us. | |
603 | #ifdef XY_FREQUENCY_LIMIT | |
604 | #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) | |
605 | ||
606 | // Check and limit the xy direction change frequency | |
607 | unsigned char direction_change = block->direction_bits ^ old_direction_bits; | |
608 | old_direction_bits = block->direction_bits; | |
609 | ||
610 | if((direction_change & (1<<X_AXIS)) == 0) { | |
611 | x_segment_time[0] += segment_time; | |
612 | } | |
613 | else { | |
614 | x_segment_time[2] = x_segment_time[1]; | |
615 | x_segment_time[1] = x_segment_time[0]; | |
616 | x_segment_time[0] = segment_time; | |
617 | } | |
618 | if((direction_change & (1<<Y_AXIS)) == 0) { | |
619 | y_segment_time[0] += segment_time; | |
620 | } | |
621 | else { | |
622 | y_segment_time[2] = y_segment_time[1]; | |
623 | y_segment_time[1] = y_segment_time[0]; | |
624 | y_segment_time[0] = segment_time; | |
625 | } | |
626 | long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2])); | |
627 | long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2])); | |
628 | long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time); | |
629 | if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME); | |
630 | #endif | |
631 | ||
632 | // Correct the speed | |
633 | if( speed_factor < 1.0) { | |
634 | for(unsigned char i=0; i < 4; i++) { | |
635 | current_speed[i] *= speed_factor; | |
636 | } | |
637 | block->nominal_speed *= speed_factor; | |
638 | block->nominal_rate *= speed_factor; | |
639 | } | |
640 | ||
641 | // Compute and limit the acceleration rate for the trapezoid generator. | |
642 | float steps_per_mm = block->step_event_count/block->millimeters; | |
643 | if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) { | |
644 | block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 | |
645 | } | |
646 | else { | |
647 | block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 | |
648 | // Limit acceleration per axis | |
649 | if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS]) | |
650 | block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; | |
651 | if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS]) | |
652 | block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; | |
653 | if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS]) | |
654 | block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; | |
655 | if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS]) | |
656 | block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; | |
657 | } | |
658 | block->acceleration = block->acceleration_st / steps_per_mm; | |
659 | block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608); | |
660 | ||
661 | #if 0 // Use old jerk for now | |
662 | // Compute path unit vector | |
663 | double unit_vec[3]; | |
664 | ||
665 | unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters; | |
666 | unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters; | |
667 | unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters; | |
668 | ||
669 | // Compute maximum allowable entry speed at junction by centripetal acceleration approximation. | |
670 | // Let a circle be tangent to both previous and current path line segments, where the junction | |
671 | // deviation is defined as the distance from the junction to the closest edge of the circle, | |
672 | // colinear with the circle center. The circular segment joining the two paths represents the | |
673 | // path of centripetal acceleration. Solve for max velocity based on max acceleration about the | |
674 | // radius of the circle, defined indirectly by junction deviation. This may be also viewed as | |
675 | // path width or max_jerk in the previous grbl version. This approach does not actually deviate | |
676 | // from path, but used as a robust way to compute cornering speeds, as it takes into account the | |
677 | // nonlinearities of both the junction angle and junction velocity. | |
678 | double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed | |
679 | ||
680 | // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. | |
681 | if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) { | |
682 | // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) | |
683 | // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. | |
684 | double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] | |
685 | - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] | |
686 | - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; | |
687 | ||
688 | // Skip and use default max junction speed for 0 degree acute junction. | |
689 | if (cos_theta < 0.95) { | |
690 | vmax_junction = min(previous_nominal_speed,block->nominal_speed); | |
691 | // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds. | |
692 | if (cos_theta > -0.95) { | |
693 | // Compute maximum junction velocity based on maximum acceleration and junction deviation | |
694 | double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive. | |
695 | vmax_junction = min(vmax_junction, | |
696 | sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) ); | |
697 | } | |
698 | } | |
699 | } | |
700 | #endif | |
701 | // Start with a safe speed | |
702 | float vmax_junction = max_xy_jerk/2; | |
703 | if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) | |
704 | vmax_junction = max_z_jerk/2; | |
705 | vmax_junction = min(vmax_junction, block->nominal_speed); | |
706 | if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) | |
707 | vmax_junction = min(vmax_junction, max_e_jerk/2); | |
708 | ||
709 | if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) { | |
710 | float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2)); | |
711 | if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { | |
712 | vmax_junction = block->nominal_speed; | |
713 | } | |
714 | if (jerk > max_xy_jerk) { | |
715 | vmax_junction *= (max_xy_jerk/jerk); | |
716 | } | |
717 | if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) { | |
718 | vmax_junction *= (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])); | |
719 | } | |
720 | if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) { | |
721 | vmax_junction *= (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])); | |
722 | } | |
723 | } | |
724 | block->max_entry_speed = vmax_junction; | |
725 | ||
726 | // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. | |
727 | double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters); | |
728 | block->entry_speed = min(vmax_junction, v_allowable); | |
729 | ||
730 | // Initialize planner efficiency flags | |
731 | // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. | |
732 | // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then | |
733 | // the current block and next block junction speeds are guaranteed to always be at their maximum | |
734 | // junction speeds in deceleration and acceleration, respectively. This is due to how the current | |
735 | // block nominal speed limits both the current and next maximum junction speeds. Hence, in both | |
736 | // the reverse and forward planners, the corresponding block junction speed will always be at the | |
737 | // the maximum junction speed and may always be ignored for any speed reduction checks. | |
738 | if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; } | |
739 | else { block->nominal_length_flag = false; } | |
740 | block->recalculate_flag = true; // Always calculate trapezoid for new block | |
741 | ||
742 | // Update previous path unit_vector and nominal speed | |
743 | memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[] | |
744 | previous_nominal_speed = block->nominal_speed; | |
745 | ||
746 | ||
747 | #ifdef ADVANCE | |
748 | // Calculate advance rate | |
749 | if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) { | |
750 | block->advance_rate = 0; | |
751 | block->advance = 0; | |
752 | } | |
753 | else { | |
754 | long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); | |
755 | float advance = (STEPS_PER_CUBIC_MM_E * advance_k) * | |
756 | (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256; | |
757 | block->advance = advance; | |
758 | if(acc_dist == 0) { | |
759 | block->advance_rate = 0; | |
760 | } | |
761 | else { | |
762 | block->advance_rate = advance / (float)acc_dist; | |
763 | } | |
764 | } | |
765 | /* | |
766 | SERIAL_ECHO_START; | |
767 | SERIAL_ECHOPGM("advance :"); | |
768 | SERIAL_ECHO(block->advance/256.0); | |
769 | SERIAL_ECHOPGM("advance rate :"); | |
770 | SERIAL_ECHOLN(block->advance_rate/256.0); | |
771 | */ | |
772 | #endif // ADVANCE | |
773 | ||
774 | calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed, | |
775 | MINIMUM_PLANNER_SPEED/block->nominal_speed); | |
776 | ||
777 | // Move buffer head | |
778 | block_buffer_head = next_buffer_head; | |
779 | ||
780 | // Update position | |
781 | memcpy(position, target, sizeof(target)); // position[] = target[] | |
782 | ||
783 | planner_recalculate(); | |
784 | ||
785 | st_wake_up(); | |
786 | } | |
787 | ||
788 | void plan_set_position(const float &x, const float &y, const float &z, const float &e) | |
789 | { | |
790 | position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); | |
791 | position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); | |
792 | position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); | |
793 | position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); | |
794 | st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]); | |
795 | previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. | |
796 | previous_speed[0] = 0.0; | |
797 | previous_speed[1] = 0.0; | |
798 | previous_speed[2] = 0.0; | |
799 | previous_speed[3] = 0.0; | |
800 | } | |
801 | ||
802 | void plan_set_e_position(const float &e) | |
803 | { | |
804 | position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); | |
805 | st_set_e_position(position[E_AXIS]); | |
806 | } | |
807 | ||
808 | uint8_t movesplanned() | |
809 | { | |
810 | return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); | |
811 | } | |
812 | ||
813 | void allow_cold_extrudes(bool allow) | |
814 | { | |
815 | #ifdef PREVENT_DANGEROUS_EXTRUDE | |
816 | allow_cold_extrude=allow; | |
817 | #endif | |
818 | } |