diff -r 0c9798d91427 -r 660ce16822a9 svg2gcode/svg/geometry.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/svg2gcode/svg/geometry.py Sat Nov 07 13:33:12 2015 +0100 @@ -0,0 +1,343 @@ +# Copyright (C) 2013 -- CJlano < cjlano @ free.fr > + +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License along +# with this program; if not, write to the Free Software Foundation, Inc., +# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + +''' +This module contains all the geometric classes and functions not directly +related to SVG parsing. It can be reused outside the scope of SVG. +''' + +import math +import numbers +import operator + +class Point: + def __init__(self, x=None, y=None): + '''A Point is defined either by a tuple/list of length 2 or + by 2 coordinates + >>> Point(1,2) + (1.000,2.000) + >>> Point((1,2)) + (1.000,2.000) + >>> Point([1,2]) + (1.000,2.000) + >>> Point('1', '2') + (1.000,2.000) + >>> Point(('1', None)) + (1.000,0.000) + ''' + if (isinstance(x, tuple) or isinstance(x, list)) and len(x) == 2: + x,y = x + + # Handle empty parameter(s) which should be interpreted as 0 + if x is None: x = 0 + if y is None: y = 0 + + try: + self.x = float(x) + self.y = float(y) + except: + raise TypeError("A Point is defined by 2 numbers or a tuple") + + def __add__(self, other): + '''Add 2 points by adding coordinates. + Try to convert other to Point if necessary + >>> Point(1,2) + Point(3,2) + (4.000,4.000) + >>> Point(1,2) + (3,2) + (4.000,4.000)''' + if not isinstance(other, Point): + try: other = Point(other) + except: return NotImplemented + return Point(self.x + other.x, self.y + other.y) + + def __sub__(self, other): + '''Substract two Points. + >>> Point(1,2) - Point(3,2) + (-2.000,0.000) + ''' + if not isinstance(other, Point): + try: other = Point(other) + except: return NotImplemented + return Point(self.x - other.x, self.y - other.y) + + def __mul__(self, other): + '''Multiply a Point with a constant. + >>> 2 * Point(1,2) + (2.000,4.000) + >>> Point(1,2) * Point(1,2) #doctest:+IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + TypeError: + ''' + if not isinstance(other, numbers.Real): + return NotImplemented + return Point(self.x * other, self.y * other) + def __rmul__(self, other): + return self.__mul__(other) + + def __eq__(self, other): + '''Test equality + >>> Point(1,2) == (1,2) + True + >>> Point(1,2) == Point(2,1) + False + ''' + if not isinstance(other, Point): + try: other = Point(other) + except: return NotImplemented + return (self.x == other.x) and (self.y == other.y) + + def __repr__(self): + return '(' + format(self.x,'.3f') + ',' + format( self.y,'.3f') + ')' + + def __str__(self): + return self.__repr__(); + + def coord(self): + '''Return the point tuple (x,y)''' + return (self.x, self.y) + + def length(self): + '''Vector length, Pythagoras theorem''' + return math.sqrt(self.x ** 2 + self.y ** 2) + + def rot(self, angle): + '''Rotate vector [Origin,self] ''' + if not isinstance(angle, Angle): + try: angle = Angle(angle) + except: return NotImplemented + x = self.x * angle.cos - self.y * angle.sin + y = self.x * angle.sin + self.y * angle.cos + return Point(x,y) + + +class Angle: + '''Define a trigonometric angle [of a vector] ''' + def __init__(self, arg): + if isinstance(arg, numbers.Real): + # We precompute sin and cos for rotations + self.angle = arg + self.cos = math.cos(self.angle) + self.sin = math.sin(self.angle) + elif isinstance(arg, Point): + # Point angle is the trigonometric angle of the vector [origin, Point] + pt = arg + try: + self.cos = pt.x/pt.length() + self.sin = pt.y/pt.length() + except ZeroDivisionError: + self.cos = 1 + self.sin = 0 + + self.angle = math.acos(self.cos) + if self.sin < 0: + self.angle = -self.angle + else: + raise TypeError("Angle is defined by a number or a Point") + + def __neg__(self): + return Angle(Point(self.cos, -self.sin)) + +class Segment: + '''A segment is an object defined by 2 points''' + def __init__(self, start, end): + self.start = start + self.end = end + + def __str__(self): + return 'Segment from ' + str(self.start) + ' to ' + str(self.end) + + def segments(self, precision=0): + ''' Segments is simply the segment start -> end''' + return [self.start, self.end] + + def length(self): + '''Segment length, Pythagoras theorem''' + s = self.end - self.start + return math.sqrt(s.x ** 2 + s.y ** 2) + + def pdistance(self, p): + '''Perpendicular distance between this Segment and a given Point p''' + if not isinstance(p, Point): + return NotImplemented + + if self.start == self.end: + # Distance from a Point to another Point is length of a segment + return Segment(self.start, p).length() + + s = self.end - self.start + if s.x == 0: + # Vertical Segment => pdistance is the difference of abscissa + return abs(self.start.x - p.x) + else: + # That's 2-D perpendicular distance formulae (ref: Wikipedia) + slope = s.y/s.x + # intercept: Crossing with ordinate y-axis + intercept = self.start.y - (slope * self.start.x) + return abs(slope * p.x - p.y + intercept) / math.sqrt(slope ** 2 + 1) + + + def bbox(self): + xmin = min(self.start.x, self.end.x) + xmax = max(self.start.x, self.end.x) + ymin = min(self.start.y, self.end.y) + ymax = max(self.start.y, self.end.y) + + return (Point(xmin,ymin),Point(xmax,ymax)) + + def transform(self, matrix): + self.start = matrix * self.start + self.end = matrix * self.end + + def scale(self, ratio): + self.start *= ratio + self.end *= ratio + def translate(self, offset): + self.start += offset + self.end += offset + def rotate(self, angle): + self.start = self.start.rot(angle) + self.end = self.end.rot(angle) + +class Bezier: + '''Bezier curve class + A Bezier curve is defined by its control points + Its dimension is equal to the number of control points + Note that SVG only support dimension 3 and 4 Bezier curve, respectively + Quadratic and Cubic Bezier curve''' + def __init__(self, pts): + self.pts = list(pts) + self.dimension = len(pts) + + def __str__(self): + return 'Bezier' + str(self.dimension) + \ + ' : ' + ", ".join([str(x) for x in self.pts]) + + def control_point(self, n): + if n >= self.dimension: + raise LookupError('Index is larger than Bezier curve dimension') + else: + return self.pts[n] + + def rlength(self): + '''Rough Bezier length: length of control point segments''' + pts = list(self.pts) + l = 0.0 + p1 = pts.pop() + while pts: + p2 = pts.pop() + l += Segment(p1, p2).length() + p1 = p2 + return l + + def bbox(self): + return self.rbbox() + + def rbbox(self): + '''Rough bounding box: return the bounding box (P1,P2) of the Bezier + _control_ points''' + xmin = min([p.x for p in self.pts]) + xmax = max([p.x for p in self.pts]) + ymin = min([p.y for p in self.pts]) + ymax = max([p.y for p in self.pts]) + + return (Point(xmin,ymin), Point(xmax,ymax)) + + def segments(self, precision=0): + '''Return a polyline approximation ("segments") of the Bezier curve + precision is the minimum significative length of a segment''' + segments = [] + # n is the number of Bezier points to draw according to precision + if precision != 0: + n = int(self.rlength() / precision) + 1 + else: + n = 1000 + if n < 10: n = 10 + if n > 1000 : n = 1000 + + for t in range(0, n+1): + segments.append(self._bezierN(float(t)/n)) + return segments + + def _bezier1(self, p0, p1, t): + '''Bezier curve, one dimension + Compute the Point corresponding to a linear Bezier curve between + p0 and p1 at "time" t ''' + pt = p0 + t * (p1 - p0) + return pt + + def _bezierN(self, t): + '''Bezier curve, Nth dimension + Compute the point of the Nth dimension Bezier curve at "time" t''' + # We reduce the N Bezier control points by computing the linear Bezier + # point of each control point segment, creating N-1 control points + # until we reach one single point + res = list(self.pts) + # We store the resulting Bezier points in res[], recursively + for n in range(self.dimension, 1, -1): + # For each control point of nth dimension, + # compute linear Bezier point a t + for i in range(0,n-1): + res[i] = self._bezier1(res[i], res[i+1], t) + return res[0] + + def transform(self, matrix): + self.pts = [matrix * x for x in self.pts] + + def scale(self, ratio): + self.pts = [x * ratio for x in self.pts] + def translate(self, offset): + self.pts = [x + offset for x in self.pts] + def rotate(self, angle): + self.pts = [x.rot(angle) for x in self.pts] + +class MoveTo: + def __init__(self, dest): + self.dest = dest + + def bbox(self): + return (self.dest, self.dest) + + def transform(self, matrix): + self.dest = matrix * self.dest + + def scale(self, ratio): + self.dest *= ratio + def translate(self, offset): + self.dest += offset + def rotate(self, angle): + self.dest = self.dest.rot(angle) + + +def simplify_segment(segment, epsilon): + '''Ramer-Douglas-Peucker algorithm''' + if len(segment) < 3 or epsilon <= 0: + return segment[:] + + l = Segment(segment[0], segment[-1]) # Longest segment + + # Find the furthest point from the segment + index, maxDist = max([(i, l.pdistance(p)) for i,p in enumerate(segment)], + key=operator.itemgetter(1)) + + if maxDist > epsilon: + # Recursively call with segment splited in 2 on its furthest point + r1 = simplify_segment(segment[:index+1], epsilon) + r2 = simplify_segment(segment[index:], epsilon) + # Remove redundant 'middle' Point + return r1[:-1] + r2 + else: + return [segment[0], segment[-1]]