Sat, 23 Sep 2017 10:27:49 +0200
Added more default options
Code cleanup
#!/usr/bin/env python ''' Copyright (C) 2010 Nick Drobchenko, nick@cnc-club.ru Copyright (C) 2005 Aaron Spike, aaron@ekips.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ''' import math, cmath def rootWrapper(a,b,c,d): if a: # Monics formula see http://en.wikipedia.org/wiki/Cubic_function#Monic_formula_of_roots a,b,c = (b/a, c/a, d/a) m = 2.0*a**3 - 9.0*a*b + 27.0*c k = a**2 - 3.0*b n = m**2 - 4.0*k**3 w1 = -.5 + .5*cmath.sqrt(-3.0) w2 = -.5 - .5*cmath.sqrt(-3.0) if n < 0: m1 = pow(complex((m+cmath.sqrt(n))/2),1./3) n1 = pow(complex((m-cmath.sqrt(n))/2),1./3) else: if m+math.sqrt(n) < 0: m1 = -pow(-(m+math.sqrt(n))/2,1./3) else: m1 = pow((m+math.sqrt(n))/2,1./3) if m-math.sqrt(n) < 0: n1 = -pow(-(m-math.sqrt(n))/2,1./3) else: n1 = pow((m-math.sqrt(n))/2,1./3) x1 = -1./3 * (a + m1 + n1) x2 = -1./3 * (a + w1*m1 + w2*n1) x3 = -1./3 * (a + w2*m1 + w1*n1) return (x1,x2,x3) elif b: det=c**2.0-4.0*b*d if det: return (-c+cmath.sqrt(det))/(2.0*b),(-c-cmath.sqrt(det))/(2.0*b) else: return -c/(2.0*b), elif c: return 1.0*(-d/c), return () def bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))): #parametric bezier x0=bx0 y0=by0 cx=3*(bx1-x0) bx=3*(bx2-bx1)-cx ax=bx3-x0-cx-bx cy=3*(by1-y0) by=3*(by2-by1)-cy ay=by3-y0-cy-by return ax,ay,bx,by,cx,cy,x0,y0 #ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) def linebezierintersect(((lx1,ly1),(lx2,ly2)),((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))): #parametric line dd=lx1 cc=lx2-lx1 bb=ly1 aa=ly2-ly1 if aa: coef1=cc/aa coef2=1 else: coef1=1 coef2=aa/cc ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) #cubic intersection coefficients a=coef1*ay-coef2*ax b=coef1*by-coef2*bx c=coef1*cy-coef2*cx d=coef1*(y0-bb)-coef2*(x0-dd) roots = rootWrapper(a,b,c,d) retval = [] for i in roots: if type(i) is complex and i.imag==0: i = i.real if type(i) is not complex and 0<=i<=1: retval.append(bezierpointatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),i)) return retval def bezierpointatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t): ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) x=ax*(t**3)+bx*(t**2)+cx*t+x0 y=ay*(t**3)+by*(t**2)+cy*t+y0 return x,y def bezierslopeatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t): ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) dx=3*ax*(t**2)+2*bx*t+cx dy=3*ay*(t**2)+2*by*t+cy return dx,dy def beziertatslope(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),(dy,dx)): ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) #quadratic coefficents of slope formula if dx: slope = 1.0*(dy/dx) a=3*ay-3*ax*slope b=2*by-2*bx*slope c=cy-cx*slope elif dy: slope = 1.0*(dx/dy) a=3*ax-3*ay*slope b=2*bx-2*by*slope c=cx-cy*slope else: return [] roots = rootWrapper(0,a,b,c) retval = [] for i in roots: if type(i) is complex and i.imag==0: i = i.real if type(i) is not complex and 0<=i<=1: retval.append(i) return retval def tpoint((x1,y1),(x2,y2),t): return x1+t*(x2-x1),y1+t*(y2-y1) def beziersplitatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t): m1=tpoint((bx0,by0),(bx1,by1),t) m2=tpoint((bx1,by1),(bx2,by2),t) m3=tpoint((bx2,by2),(bx3,by3),t) m4=tpoint(m1,m2,t) m5=tpoint(m2,m3,t) m=tpoint(m4,m5,t) return ((bx0,by0),m1,m4,m),(m,m5,m3,(bx3,by3)) ''' Approximating the arc length of a bezier curve according to <http://www.cit.gu.edu.au/~anthony/info/graphics/bezier.curves> if: L1 = |P0 P1| +|P1 P2| +|P2 P3| L0 = |P0 P3| then: L = 1/2*L0 + 1/2*L1 ERR = L1-L0 ERR approaches 0 as the number of subdivisions (m) increases 2^-4m Reference: Jens Gravesen <gravesen@mat.dth.dk> "Adaptive subdivision and the length of Bezier curves" mat-report no. 1992-10, Mathematical Institute, The Technical University of Denmark. ''' def pointdistance((x1,y1),(x2,y2)): return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2)) def Gravesen_addifclose(b, len, error = 0.001): box = 0 for i in range(1,4): box += pointdistance(b[i-1], b[i]) chord = pointdistance(b[0], b[3]) if (box - chord) > error: first, second = beziersplitatt(b, 0.5) Gravesen_addifclose(first, len, error) Gravesen_addifclose(second, len, error) else: len[0] += (box / 2.0) + (chord / 2.0) def bezierlengthGravesen(b, error = 0.001): len = [0] Gravesen_addifclose(b, len, error) return len[0] # balf = Bezier Arc Length Function balfax,balfbx,balfcx,balfay,balfby,balfcy = 0,0,0,0,0,0 def balf(t): retval = (balfax*(t**2) + balfbx*t + balfcx)**2 + (balfay*(t**2) + balfby*t + balfcy)**2 return math.sqrt(retval) def Simpson(f, a, b, n_limit, tolerance): n = 2 multiplier = (b - a)/6.0 endsum = f(a) + f(b) interval = (b - a)/2.0 asum = 0.0 bsum = f(a + interval) est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum)) est0 = 2.0 * est1 #print multiplier, endsum, interval, asum, bsum, est1, est0 while n < n_limit and abs(est1 - est0) > tolerance: n *= 2 multiplier /= 2.0 interval /= 2.0 asum += bsum bsum = 0.0 est0 = est1 for i in xrange(1, n, 2): bsum += f(a + (i * interval)) est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum)) #print multiplier, endsum, interval, asum, bsum, est1, est0 return est1 def bezierlengthSimpson(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), tolerance = 0.001): global balfax,balfbx,balfcx,balfay,balfby,balfcy ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy return Simpson(balf, 0.0, 1.0, 4096, tolerance) def beziertatlength(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), l = 0.5, tolerance = 0.001): global balfax,balfbx,balfcx,balfay,balfby,balfcy ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy t = 1.0 tdiv = t curlen = Simpson(balf, 0.0, t, 4096, tolerance) targetlen = l * curlen diff = curlen - targetlen while abs(diff) > tolerance: tdiv /= 2.0 if diff < 0: t += tdiv else: t -= tdiv curlen = Simpson(balf, 0.0, t, 4096, tolerance) diff = curlen - targetlen return t #default bezier length method bezierlength = bezierlengthSimpson if __name__ == '__main__': # import timing #print linebezierintersect(((,),(,)),((,),(,),(,),(,))) #print linebezierintersect(((0,1),(0,-1)),((-1,0),(-.5,0),(.5,0),(1,0))) tol = 0.00000001 curves = [((0,0),(1,5),(4,5),(5,5)), ((0,0),(0,0),(5,0),(10,0)), ((0,0),(0,0),(5,1),(10,0)), ((-10,0),(0,0),(10,0),(10,10)), ((15,10),(0,0),(10,0),(-5,10))] ''' for curve in curves: timing.start() g = bezierlengthGravesen(curve,tol) timing.finish() gt = timing.micro() timing.start() s = bezierlengthSimpson(curve,tol) timing.finish() st = timing.micro() print g, gt print s, st ''' for curve in curves: print beziertatlength(curve,0.5) # vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 encoding=utf-8 textwidth=99