Fri, 03 Jun 2016 09:16:07 +0200
Added printrun sourcecode from
https://github.com/kliment/Printrun
03.06.2016 09:10
#!/usr/bin/env python # This file is part of the Printrun suite. # # Printrun is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Printrun is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Printrun. If not, see <http://www.gnu.org/licenses/>. import math from pyglet.gl import GLdouble def cross(v1, v2): return [v1[1] * v2[2] - v1[2] * v2[1], v1[2] * v2[0] - v1[0] * v2[2], v1[0] * v2[1] - v1[1] * v2[0]] def trackball(p1x, p1y, p2x, p2y, r): TRACKBALLSIZE = r if p1x == p2x and p1y == p2y: return [0.0, 0.0, 0.0, 1.0] p1 = [p1x, p1y, project_to_sphere(TRACKBALLSIZE, p1x, p1y)] p2 = [p2x, p2y, project_to_sphere(TRACKBALLSIZE, p2x, p2y)] a = cross(p2, p1) d = map(lambda x, y: x - y, p1, p2) t = math.sqrt(sum(map(lambda x: x * x, d))) / (2.0 * TRACKBALLSIZE) if t > 1.0: t = 1.0 if t < -1.0: t = -1.0 phi = 2.0 * math.asin(t) return axis_to_quat(a, phi) def axis_to_quat(a, phi): lena = math.sqrt(sum(map(lambda x: x * x, a))) q = map(lambda x: x * (1 / lena), a) q = map(lambda x: x * math.sin(phi / 2.0), q) q.append(math.cos(phi / 2.0)) return q def build_rotmatrix(q): m = (GLdouble * 16)() m[0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]) m[1] = 2.0 * (q[0] * q[1] - q[2] * q[3]) m[2] = 2.0 * (q[2] * q[0] + q[1] * q[3]) m[3] = 0.0 m[4] = 2.0 * (q[0] * q[1] + q[2] * q[3]) m[5] = 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]) m[6] = 2.0 * (q[1] * q[2] - q[0] * q[3]) m[7] = 0.0 m[8] = 2.0 * (q[2] * q[0] - q[1] * q[3]) m[9] = 2.0 * (q[1] * q[2] + q[0] * q[3]) m[10] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]) m[11] = 0.0 m[12] = 0.0 m[13] = 0.0 m[14] = 0.0 m[15] = 1.0 return m def project_to_sphere(r, x, y): d = math.sqrt(x * x + y * y) if (d < r * 0.70710678118654752440): return math.sqrt(r * r - d * d) else: t = r / 1.41421356237309504880 return t * t / d def mulquat(q1, rq): return [q1[3] * rq[0] + q1[0] * rq[3] + q1[1] * rq[2] - q1[2] * rq[1], q1[3] * rq[1] + q1[1] * rq[3] + q1[2] * rq[0] - q1[0] * rq[2], q1[3] * rq[2] + q1[2] * rq[3] + q1[0] * rq[1] - q1[1] * rq[0], q1[3] * rq[3] - q1[0] * rq[0] - q1[1] * rq[1] - q1[2] * rq[2]]