--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/printrun-src/printrun/svg2gcode/ffgeom.py Fri Jun 03 09:42:44 2016 +0200 @@ -0,0 +1,141 @@ +#!/usr/bin/env python +""" + ffgeom.py + Copyright (C) 2005 Aaron Cyril Spike, aaron@ekips.org + + This file is part of FretFind 2-D. + + FretFind 2-D is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + FretFind 2-D is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with FretFind 2-D; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +""" +import math +try: + NaN = float('NaN') +except ValueError: + PosInf = 1e300000 + NaN = PosInf/PosInf + +class Point: + precision = 5 + def __init__(self, x, y): + self.__coordinates = {'x' : float(x), 'y' : float(y)} + def __getitem__(self, key): + return self.__coordinates[key] + def __setitem__(self, key, value): + self.__coordinates[key] = float(value) + def __repr__(self): + return '(%s, %s)' % (round(self['x'],self.precision),round(self['y'],self.precision)) + def copy(self): + return Point(self['x'],self['y']) + def translate(self, x, y): + self['x'] += x + self['y'] += y + def move(self, x, y): + self['x'] = float(x) + self['y'] = float(y) + +class Segment: + def __init__(self, e0, e1): + self.__endpoints = [e0, e1] + def __getitem__(self, key): + return self.__endpoints[key] + def __setitem__(self, key, value): + self.__endpoints[key] = value + def __repr__(self): + return repr(self.__endpoints) + def copy(self): + return Segment(self[0],self[1]) + def translate(self, x, y): + self[0].translate(x,y) + self[1].translate(x,y) + def move(self,e0,e1): + self[0] = e0 + self[1] = e1 + def delta_x(self): + return self[1]['x'] - self[0]['x'] + def delta_y(self): + return self[1]['y'] - self[0]['y'] + #alias functions + run = delta_x + rise = delta_y + def slope(self): + if self.delta_x() != 0: + return self.delta_x() / self.delta_y() + return NaN + def intercept(self): + if self.delta_x() != 0: + return self[1]['y'] - (self[0]['x'] * self.slope()) + return NaN + def distanceToPoint(self, p): + s2 = Segment(self[0],p) + c1 = dot(s2,self) + if c1 <= 0: + return Segment(p,self[0]).length() + c2 = dot(self,self) + if c2 <= c1: + return Segment(p,self[1]).length() + return self.perpDistanceToPoint(p) + def perpDistanceToPoint(self, p): + len = self.length() + if len == 0: return NaN + return math.fabs(((self[1]['x'] - self[0]['x']) * (self[0]['y'] - p['y'])) - \ + ((self[0]['x'] - p['x']) * (self[1]['y'] - self[0]['y']))) / len + def angle(self): + return math.pi * (math.atan2(self.delta_y(), self.delta_x())) / 180 + def length(self): + return math.sqrt((self.delta_x() ** 2) + (self.delta_y() ** 2)) + def pointAtLength(self, len): + if self.length() == 0: return Point(NaN, NaN) + ratio = len / self.length() + x = self[0]['x'] + (ratio * self.delta_x()) + y = self[0]['y'] + (ratio * self.delta_y()) + return Point(x, y) + def pointAtRatio(self, ratio): + if self.length() == 0: return Point(NaN, NaN) + x = self[0]['x'] + (ratio * self.delta_x()) + y = self[0]['y'] + (ratio * self.delta_y()) + return Point(x, y) + def createParallel(self, p): + return Segment(Point(p['x'] + self.delta_x(), p['y'] + self.delta_y()), p) + def intersect(self, s): + return intersectSegments(self, s) + +def intersectSegments(s1, s2): + x1 = s1[0]['x'] + x2 = s1[1]['x'] + x3 = s2[0]['x'] + x4 = s2[1]['x'] + + y1 = s1[0]['y'] + y2 = s1[1]['y'] + y3 = s2[0]['y'] + y4 = s2[1]['y'] + + denom = ((y4 - y3) * (x2 - x1)) - ((x4 - x3) * (y2 - y1)) + num1 = ((x4 - x3) * (y1 - y3)) - ((y4 - y3) * (x1 - x3)) + num2 = ((x2 - x1) * (y1 - y3)) - ((y2 - y1) * (x1 - x3)) + + num = num1 + + if denom != 0: + x = x1 + ((num / denom) * (x2 - x1)) + y = y1 + ((num / denom) * (y2 - y1)) + return Point(x, y) + return Point(NaN, NaN) + +def dot(s1, s2): + return s1.delta_x() * s2.delta_x() + s1.delta_y() * s2.delta_y() + + +# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 fileencoding=utf-8 textwidth=99