--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/printrun-src/printrun/svg2gcode/bezmisc.py Fri Jun 03 09:42:44 2016 +0200 @@ -0,0 +1,274 @@ +#!/usr/bin/env python +''' +Copyright (C) 2010 Nick Drobchenko, nick@cnc-club.ru +Copyright (C) 2005 Aaron Spike, aaron@ekips.org + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +''' + +import math, cmath + +def rootWrapper(a,b,c,d): + if a: + # Monics formula see http://en.wikipedia.org/wiki/Cubic_function#Monic_formula_of_roots + a,b,c = (b/a, c/a, d/a) + m = 2.0*a**3 - 9.0*a*b + 27.0*c + k = a**2 - 3.0*b + n = m**2 - 4.0*k**3 + w1 = -.5 + .5*cmath.sqrt(-3.0) + w2 = -.5 - .5*cmath.sqrt(-3.0) + if n < 0: + m1 = pow(complex((m+cmath.sqrt(n))/2),1./3) + n1 = pow(complex((m-cmath.sqrt(n))/2),1./3) + else: + if m+math.sqrt(n) < 0: + m1 = -pow(-(m+math.sqrt(n))/2,1./3) + else: + m1 = pow((m+math.sqrt(n))/2,1./3) + if m-math.sqrt(n) < 0: + n1 = -pow(-(m-math.sqrt(n))/2,1./3) + else: + n1 = pow((m-math.sqrt(n))/2,1./3) + x1 = -1./3 * (a + m1 + n1) + x2 = -1./3 * (a + w1*m1 + w2*n1) + x3 = -1./3 * (a + w2*m1 + w1*n1) + return (x1,x2,x3) + elif b: + det=c**2.0-4.0*b*d + if det: + return (-c+cmath.sqrt(det))/(2.0*b),(-c-cmath.sqrt(det))/(2.0*b) + else: + return -c/(2.0*b), + elif c: + return 1.0*(-d/c), + return () + +def bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))): + #parametric bezier + x0=bx0 + y0=by0 + cx=3*(bx1-x0) + bx=3*(bx2-bx1)-cx + ax=bx3-x0-cx-bx + cy=3*(by1-y0) + by=3*(by2-by1)-cy + ay=by3-y0-cy-by + + return ax,ay,bx,by,cx,cy,x0,y0 + #ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) + +def linebezierintersect(((lx1,ly1),(lx2,ly2)),((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))): + #parametric line + dd=lx1 + cc=lx2-lx1 + bb=ly1 + aa=ly2-ly1 + + if aa: + coef1=cc/aa + coef2=1 + else: + coef1=1 + coef2=aa/cc + + ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) + #cubic intersection coefficients + a=coef1*ay-coef2*ax + b=coef1*by-coef2*bx + c=coef1*cy-coef2*cx + d=coef1*(y0-bb)-coef2*(x0-dd) + + roots = rootWrapper(a,b,c,d) + retval = [] + for i in roots: + if type(i) is complex and i.imag==0: + i = i.real + if type(i) is not complex and 0<=i<=1: + retval.append(bezierpointatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),i)) + return retval + +def bezierpointatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t): + ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) + x=ax*(t**3)+bx*(t**2)+cx*t+x0 + y=ay*(t**3)+by*(t**2)+cy*t+y0 + return x,y + +def bezierslopeatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t): + ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) + dx=3*ax*(t**2)+2*bx*t+cx + dy=3*ay*(t**2)+2*by*t+cy + return dx,dy + +def beziertatslope(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),(dy,dx)): + ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) + #quadratic coefficents of slope formula + if dx: + slope = 1.0*(dy/dx) + a=3*ay-3*ax*slope + b=2*by-2*bx*slope + c=cy-cx*slope + elif dy: + slope = 1.0*(dx/dy) + a=3*ax-3*ay*slope + b=2*bx-2*by*slope + c=cx-cy*slope + else: + return [] + + roots = rootWrapper(0,a,b,c) + retval = [] + for i in roots: + if type(i) is complex and i.imag==0: + i = i.real + if type(i) is not complex and 0<=i<=1: + retval.append(i) + return retval + +def tpoint((x1,y1),(x2,y2),t): + return x1+t*(x2-x1),y1+t*(y2-y1) +def beziersplitatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),t): + m1=tpoint((bx0,by0),(bx1,by1),t) + m2=tpoint((bx1,by1),(bx2,by2),t) + m3=tpoint((bx2,by2),(bx3,by3),t) + m4=tpoint(m1,m2,t) + m5=tpoint(m2,m3,t) + m=tpoint(m4,m5,t) + + return ((bx0,by0),m1,m4,m),(m,m5,m3,(bx3,by3)) + +''' +Approximating the arc length of a bezier curve +according to <http://www.cit.gu.edu.au/~anthony/info/graphics/bezier.curves> + +if: + L1 = |P0 P1| +|P1 P2| +|P2 P3| + L0 = |P0 P3| +then: + L = 1/2*L0 + 1/2*L1 + ERR = L1-L0 +ERR approaches 0 as the number of subdivisions (m) increases + 2^-4m + +Reference: +Jens Gravesen <gravesen@mat.dth.dk> +"Adaptive subdivision and the length of Bezier curves" +mat-report no. 1992-10, Mathematical Institute, The Technical +University of Denmark. +''' +def pointdistance((x1,y1),(x2,y2)): + return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2)) +def Gravesen_addifclose(b, len, error = 0.001): + box = 0 + for i in range(1,4): + box += pointdistance(b[i-1], b[i]) + chord = pointdistance(b[0], b[3]) + if (box - chord) > error: + first, second = beziersplitatt(b, 0.5) + Gravesen_addifclose(first, len, error) + Gravesen_addifclose(second, len, error) + else: + len[0] += (box / 2.0) + (chord / 2.0) +def bezierlengthGravesen(b, error = 0.001): + len = [0] + Gravesen_addifclose(b, len, error) + return len[0] + +# balf = Bezier Arc Length Function +balfax,balfbx,balfcx,balfay,balfby,balfcy = 0,0,0,0,0,0 +def balf(t): + retval = (balfax*(t**2) + balfbx*t + balfcx)**2 + (balfay*(t**2) + balfby*t + balfcy)**2 + return math.sqrt(retval) + +def Simpson(f, a, b, n_limit, tolerance): + n = 2 + multiplier = (b - a)/6.0 + endsum = f(a) + f(b) + interval = (b - a)/2.0 + asum = 0.0 + bsum = f(a + interval) + est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum)) + est0 = 2.0 * est1 + #print multiplier, endsum, interval, asum, bsum, est1, est0 + while n < n_limit and abs(est1 - est0) > tolerance: + n *= 2 + multiplier /= 2.0 + interval /= 2.0 + asum += bsum + bsum = 0.0 + est0 = est1 + for i in xrange(1, n, 2): + bsum += f(a + (i * interval)) + est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum)) + #print multiplier, endsum, interval, asum, bsum, est1, est0 + return est1 + +def bezierlengthSimpson(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), tolerance = 0.001): + global balfax,balfbx,balfcx,balfay,balfby,balfcy + ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) + balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy + return Simpson(balf, 0.0, 1.0, 4096, tolerance) + +def beziertatlength(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)), l = 0.5, tolerance = 0.001): + global balfax,balfbx,balfcx,balfay,balfby,balfcy + ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))) + balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy + t = 1.0 + tdiv = t + curlen = Simpson(balf, 0.0, t, 4096, tolerance) + targetlen = l * curlen + diff = curlen - targetlen + while abs(diff) > tolerance: + tdiv /= 2.0 + if diff < 0: + t += tdiv + else: + t -= tdiv + curlen = Simpson(balf, 0.0, t, 4096, tolerance) + diff = curlen - targetlen + return t + +#default bezier length method +bezierlength = bezierlengthSimpson + +if __name__ == '__main__': +# import timing + #print linebezierintersect(((,),(,)),((,),(,),(,),(,))) + #print linebezierintersect(((0,1),(0,-1)),((-1,0),(-.5,0),(.5,0),(1,0))) + tol = 0.00000001 + curves = [((0,0),(1,5),(4,5),(5,5)), + ((0,0),(0,0),(5,0),(10,0)), + ((0,0),(0,0),(5,1),(10,0)), + ((-10,0),(0,0),(10,0),(10,10)), + ((15,10),(0,0),(10,0),(-5,10))] + ''' + for curve in curves: + timing.start() + g = bezierlengthGravesen(curve,tol) + timing.finish() + gt = timing.micro() + + timing.start() + s = bezierlengthSimpson(curve,tol) + timing.finish() + st = timing.micro() + + print g, gt + print s, st + ''' + for curve in curves: + print beziertatlength(curve,0.5) + + +# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 encoding=utf-8 textwidth=99