Tue, 19 Jan 2021 20:25:47 +0100
NeoCube laser cutting improvements
15 | 1 | #!/usr/bin/env python |
2 | ||
3 | # This file is part of the Printrun suite. | |
4 | # | |
5 | # Printrun is free software: you can redistribute it and/or modify | |
6 | # it under the terms of the GNU General Public License as published by | |
7 | # the Free Software Foundation, either version 3 of the License, or | |
8 | # (at your option) any later version. | |
9 | # | |
10 | # Printrun is distributed in the hope that it will be useful, | |
11 | # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 | # GNU General Public License for more details. | |
14 | # | |
15 | # You should have received a copy of the GNU General Public License | |
16 | # along with Printrun. If not, see <http://www.gnu.org/licenses/>. | |
17 | ||
18 | import math | |
19 | ||
20 | from pyglet.gl import GLdouble | |
21 | ||
22 | def cross(v1, v2): | |
23 | return [v1[1] * v2[2] - v1[2] * v2[1], | |
24 | v1[2] * v2[0] - v1[0] * v2[2], | |
25 | v1[0] * v2[1] - v1[1] * v2[0]] | |
26 | ||
27 | def trackball(p1x, p1y, p2x, p2y, r): | |
28 | TRACKBALLSIZE = r | |
29 | ||
30 | if p1x == p2x and p1y == p2y: | |
31 | return [0.0, 0.0, 0.0, 1.0] | |
32 | ||
33 | p1 = [p1x, p1y, project_to_sphere(TRACKBALLSIZE, p1x, p1y)] | |
34 | p2 = [p2x, p2y, project_to_sphere(TRACKBALLSIZE, p2x, p2y)] | |
35 | a = cross(p2, p1) | |
36 | ||
37 | d = map(lambda x, y: x - y, p1, p2) | |
38 | t = math.sqrt(sum(map(lambda x: x * x, d))) / (2.0 * TRACKBALLSIZE) | |
39 | ||
40 | if t > 1.0: | |
41 | t = 1.0 | |
42 | if t < -1.0: | |
43 | t = -1.0 | |
44 | phi = 2.0 * math.asin(t) | |
45 | ||
46 | return axis_to_quat(a, phi) | |
47 | ||
48 | def axis_to_quat(a, phi): | |
49 | lena = math.sqrt(sum(map(lambda x: x * x, a))) | |
50 | q = map(lambda x: x * (1 / lena), a) | |
51 | q = map(lambda x: x * math.sin(phi / 2.0), q) | |
52 | q.append(math.cos(phi / 2.0)) | |
53 | return q | |
54 | ||
55 | def build_rotmatrix(q): | |
56 | m = (GLdouble * 16)() | |
57 | m[0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]) | |
58 | m[1] = 2.0 * (q[0] * q[1] - q[2] * q[3]) | |
59 | m[2] = 2.0 * (q[2] * q[0] + q[1] * q[3]) | |
60 | m[3] = 0.0 | |
61 | ||
62 | m[4] = 2.0 * (q[0] * q[1] + q[2] * q[3]) | |
63 | m[5] = 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]) | |
64 | m[6] = 2.0 * (q[1] * q[2] - q[0] * q[3]) | |
65 | m[7] = 0.0 | |
66 | ||
67 | m[8] = 2.0 * (q[2] * q[0] - q[1] * q[3]) | |
68 | m[9] = 2.0 * (q[1] * q[2] + q[0] * q[3]) | |
69 | m[10] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]) | |
70 | m[11] = 0.0 | |
71 | ||
72 | m[12] = 0.0 | |
73 | m[13] = 0.0 | |
74 | m[14] = 0.0 | |
75 | m[15] = 1.0 | |
76 | return m | |
77 | ||
78 | ||
79 | def project_to_sphere(r, x, y): | |
80 | d = math.sqrt(x * x + y * y) | |
81 | if (d < r * 0.70710678118654752440): | |
82 | return math.sqrt(r * r - d * d) | |
83 | else: | |
84 | t = r / 1.41421356237309504880 | |
85 | return t * t / d | |
86 | ||
87 | ||
88 | def mulquat(q1, rq): | |
89 | return [q1[3] * rq[0] + q1[0] * rq[3] + q1[1] * rq[2] - q1[2] * rq[1], | |
90 | q1[3] * rq[1] + q1[1] * rq[3] + q1[2] * rq[0] - q1[0] * rq[2], | |
91 | q1[3] * rq[2] + q1[2] * rq[3] + q1[0] * rq[1] - q1[1] * rq[0], | |
92 | q1[3] * rq[3] - q1[0] * rq[0] - q1[1] * rq[1] - q1[2] * rq[2]] |