Sat, 21 Dec 2013 21:01:55 +0100
started firmware for car004f hardware
#include <avr/interrupt.h> #include <avr/io.h> #include <avr/wdt.h> #include <avr/eeprom.h> #include <stdlib.h> #include <stdint.h> #include <avr/pgmspace.h> #include <util/delay.h> #include "driver/rs232.h" #include "driver/adc.h" #include "main.h" #include "lowlevel.h" const char ok[] PROGMEM="OK\n"; const char busy[] PROGMEM="BUSY\n"; const char error[] PROGMEM="ERROR\n"; const char prepare[] PROGMEM="!PRE\n"; const char countdownstart[] PROGMEM="!SET\n"; const char racestart[] PROGMEM="!GO\n"; const char SHORTCUT[] PROGMEM="!OC\n"; const char PANIC[] PROGMEM="!STOP\n"; const char RESUME[] PROGMEM="!RESUME\n"; typedef union { uint32_t value; uint16_t word[2]; // high, low word uint8_t byte[4]; // all four bytes } u32; typedef union { uint16_t value; uint8_t byte[2]; // all two bytes } u16; #define FUEL_FULL 10000 #define FUEL_JUMPSTART 5000 #define FUEL_DIV_DEFAULT 25 #define PITLANE_SPEEDLIMIT 10 #define FINISHLINE_DIFF_BLOCK 1500 // minimum 750 ms between laps (prevents double counted lapt on finish crossing) volatile uint8_t fuel_divisor = FUEL_DIV_DEFAULT; // default, can be set via serial command typedef struct { unsigned speedlimit:4; // 4bits speedlimit unsigned speedminimum:4; // 4bits speedminimum unsigned seccnt:4; // 4 bits tenth seconds counter unsigned accel:4; // 4 bits last configured acceleration unsigned speed:4; // 4 bits last speed unsigned pitlane_limit:4; // 4bits speedlimit unsigned trackswitch:1; // 1bit bool unsigned canrefuel:1; // 1bit bool unsigned unlimitedfuel:1; // 1bit bool unsigned trackchange:1; // 1bit bool uint16_t jumpstart_time, fuel; uint16_t laps; u32 lap_time_start, lap_time; } cardata; static char s[8]; static uint8_t countdown, countdown_loops; extern uint8_t mode = 0; // valid race modes: // 0: free drive / idle // 1: waiting for countdown start // 2: race countdown initiated // 3: Race start condition // 255 PANIC MODE -> TURN OFF TRACK POWER extern uint8_t btn_start = _BV(SW_START); extern uint8_t old_start = _BV(SW_START); // todo: pack as bit structure: typedef struct { unsigned fuel_enabled:1; unsigned pitlane_finishline:1; unsigned liveinfo:6; } switches_s; switches_s switches; volatile u32 sysclk; volatile uint8_t sysclk_packettimer = 0; volatile cardata slot[MAX_SLOTS]; volatile uint8_t car0, car1; volatile uint16_t car0_new, car0_old; volatile uint16_t car1_new, car1_old; uint8_t car0_state, car1_state; volatile uint8_t program_count = 0; volatile uint8_t program_id; volatile uint8_t program_command; volatile uint8_t program_parameter; volatile uint8_t datalen = 0; //unused: char data[10]; // 8 bytes data buffer + string termination static char buffer[RS232_BUFSIZE+1]; static uint8_t buffer_len; volatile uint16_t transmit_buffer; volatile uint16_t transmit_buffer_queue; volatile uint8_t transmit_len; volatile uint8_t transmit_len_next; volatile uint8_t transmit_len_queue; volatile uint16_t responsewire_data = 0; volatile uint16_t response; volatile uint8_t response_len; volatile uint8_t timer0_delay; /* RESPONSEWIRE frame format: 1 startbit 2 car id bit 1 3 car id bit 2 4 car id bit 3 5 track change status bit 1 6 track change status bit 2 7 track change status bit 3 8 track change status bit 4 9 sender id bit 1 10 sender id bit 2 11 sender id bit 3 12 sender id bit 4 13 device type bit 1 14 device type bit 2 15 device type bit 3 16 stopbit */ /* PITLANE/TRACKSWITCH STATUS DEFINITION 1 = AA 2 = AB 3 = BB 4 = BA 5 = BC 6 = ZZ -> pitlane exit */ #define STARTSTOP 0b1000000000000001 void decode_responsewire(void) { // ATTENTION: THIS IS CALLED IN AN INTERRUPT, KEEP AS SHORT AS POSSIBLE uint16_t data = responsewire_data; // first check if start + stopbit are set // todo future: unsure but last bit doesnt get set?! /* if ((data & STARTSTOP) != STARTSTOP) { RS232_puts("RW BAD\n"); return; // incomplete response } */ // now extract the car id, track change status data >>= 1; uint8_t car = (data & 0b111); data >>= 3; uint8_t status = (data & 0b1111); data >>= 4; uint8_t sender = (data & 0b1111); data >>= 4; uint8_t type = (data & 0b111); if (type == 4) { // pitlane response if (status == 5) { slot[car].canrefuel = 1; if (switches.pitlane_finishline) slot[car].laps++; } if (status == 6) for (data=0; data<MAX_SLOTS; data++) slot[data].canrefuel = 0; if (status == 7) slot[car].canrefuel = 0; } // New binary protocol: TODO: compress sender & status, car & type RS232_puts("RW:\n"); RS232_putc(8); // 8 binary bytes following RS232_putc(car); RS232_putc(type); RS232_putc(sender); RS232_putc(status); RS232_putc(sysclk.byte[3]); RS232_putc(sysclk.byte[2]); RS232_putc(sysclk.byte[1]); RS232_putc(sysclk.byte[0]); RS232_putc('\n'); } int insert_queue(uint16_t tmp, uint8_t len) { if (transmit_buffer_queue == 0) { transmit_buffer_queue = tmp; transmit_len_queue = len; return 1; } return 0; } void startbutton(void) { // start button press active if (mode == 0) { mode = 1; // set wait for race start mode reset_vars(); LED(1, 1); LED(2, 1); LED(3, 1); LED(4, 1); LED(5, 1); RS232_puts_p(prepare); } else if (mode == 1) { // Initiate race countdown sysclk.value = 0; countdown = 5; countdown_loops = COUNTDOWN_DELAY; mode = 2; LED(1, 0); LED(2, 0); LED(3, 0); LED(4, 0); LED(5, 0); RS232_puts_p(countdownstart); } } ISR ( USART_RXC_vect ) { uint8_t tmp; u16 fuel, jumpstart_time; char c = UDR; // check for buffer overflow if (buffer_len==sizeof(buffer)) { buffer_len=0; } else { // collect characters until end of line if ( (c=='\n') ) { buffer[buffer_len]=0; // packet end received, parse the received packet switch (buffer[0]) { case 'P': // inject a program data word to the rails if (program_count == 0) { program_id = buffer[3]-'0'; program_command = buffer[1]-'0'; if (program_command > 9) program_command = buffer[1]-'A'+10; program_parameter = buffer[2]-'0'; if (program_parameter > 9) program_parameter = buffer[2]-'A'+10; if (program_command < 4) program_count = 0x02; // send commands twice (fuel, speed, brake) else program_count = 0x01; RS232_puts_p(ok); } else RS232_puts_p(busy); break; case 'U': // Set unlimited fuel status for a car (id 4..5 default to unlimited fuel) tmp = buffer[1]-'0'; if (tmp < 6) { slot[tmp].unlimitedfuel = 0; if ((buffer[2]-'0') != 0) slot[tmp].unlimitedfuel = 1; RS232_puts_p(ok); } else RS232_puts_p(error); break; case 'L': // Limit maximum speed for a car tmp = buffer[2]-'0'; if (tmp > 9) tmp = buffer[2]-'A'+10; slot[buffer[1]-'0'].speedlimit = tmp; RS232_puts_p(ok); break; case 'S': // set minimum speed for a car tmp = buffer[2]-'0'; if (tmp > 9) tmp = buffer[2]-'A'+10; slot[buffer[1]-'0'].speedminimum = tmp; RS232_puts_p(ok); break; case 'F': // set fuel enabled switches.fuel_enabled = buffer[1]-'0'; if (buffer[2] == ':') { // convert fuel divisor buffer[0] = '0'; // atoi expects zeros! buffer[1] = '0'; buffer[2] = '0'; RS232_puts("DivisorChange: "); itoa(fuel_divisor, s, 10); RS232_puts(s); RS232_putc('>'); fuel_divisor = atoi(buffer); itoa(fuel_divisor, s, 10); RS232_puts(s); RS232_putc(' '); } RS232_puts_p(ok); break; case '*': // set live information switches.liveinfo = buffer[1]-'0'; RS232_puts_p(ok); break; case 'X': // set Pitlane act as finish line // this can be used if pitlane exit comes after finish line while pitlane entry is before finish line switches.pitlane_finishline = buffer[1]-'0'; RS232_puts_p(ok); break; case '#': // remote start button press RS232_puts_p(ok); startbutton(); break; case '+': // toggle panic mode RS232_puts_p(ok); if (mode != 0xff) { mode = 0xff; RS232_puts_p(PANIC); } else { mode = 0; RS232_puts_p(RESUME); } break; case 'I': // get Information data (incl. important global parameter dump) // New binary protocol: RS232_puts("V:"); RS232_puts(VERSION); RS232_puts(":\n"); RS232_putc(6 * MAX_SLOTS); // binary bytes following for (tmp=0;tmp<MAX_SLOTS;tmp++) { fuel.value = slot[tmp].fuel; jumpstart_time.value = slot[tmp].jumpstart_time; RS232_putc(slot[tmp].speedlimit); // output speed limits RS232_putc(slot[tmp].speedminimum); // output minimum speed RS232_putc(fuel.byte[1]); // output fuel levels (0=empty, 100=full, 0xff=no fuel option) RS232_putc(fuel.byte[0]); // output fuel levels (0=empty, 100=full, 0xff=no fuel option) RS232_putc(jumpstart_time.byte[1]); // output jumpstart times RS232_putc(jumpstart_time.byte[0]); // output jumpstart times } RS232_putc('\n'); break; } // wait for the next packet buffer_len=0; } else { buffer[buffer_len++]=c; } } } void jumpstart(uint8_t controller) { if (slot[controller].jumpstart_time == 0) { slot[controller].jumpstart_time = sysclk.word[0]; // low word RS232_putc('~'); RS232_putc('0'+controller); RS232_putc(':'); itoa(slot[controller].jumpstart_time, s, 16); RS232_puts(s); RS232_putc('\n'); slot[controller].fuel = FUEL_JUMPSTART; // suck 50% off that bitch! } } uint8_t do_controller(uint8_t controller) { // read controller X speed & encode controller data packet uint16_t tmp = 0; uint8_t speed; uint8_t trackchange = 0xff; if ( (PIN(SW_PACECAR_PORT) & _BV(SW_PACECAR)) == 0 ) { // map controller 1+2 to 5+6 if (controller == 4) tmp = ((getADC(CONTROLLER1_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if (controller == 5) tmp = ((getADC(CONTROLLER2_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if (controller == 4) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER1_SW)); if (controller == 5) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER2_SW)); } else { // read speeds if ((controller == 0) && (mode!=1)) tmp = ((getADC(CONTROLLER1_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if ((controller == 1) && (mode!=1)) tmp = ((getADC(CONTROLLER2_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if ((controller == 2) && (mode!=1)) tmp = ((getADC(CONTROLLER3_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if ((controller == 3) && (mode!=1)) tmp = ((getADC(CONTROLLER4_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if (controller == 0) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER1_SW)); if (controller == 1) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER2_SW)); if (controller == 2) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER3_SW)); if (controller == 3) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER4_SW)); if (controller < 4) { if (tmp < slot[controller].speedminimum) tmp = slot[controller].speedminimum; if ((mode == 2) && (tmp != 0)) { jumpstart(controller); tmp = 0; } if (tmp > slot[controller].speedlimit) tmp = slot[controller].speedlimit; if (slot[controller].canrefuel && (tmp > slot[controller].pitlane_limit)) tmp = slot[controller].pitlane_limit; } else { if ((mode == 0) && (tmp < slot[controller].speedminimum)) tmp = slot[controller].speedminimum; if (tmp > slot[controller].speedlimit) tmp = slot[controller].speedlimit; // //if ( (trackchange!=0) || (slot[controller].trackswitch)) tmp |= (1<<5); } } speed = tmp; slot[controller].speed = tmp; slot[controller].trackchange = (trackchange != 0); tmp = tmp << 1; if (trackchange != 0) tmp |= (1<<5); switch (controller) { case 0: if (trackchange != 0) { if (mode == 0) LED(1,0); } else if (mode == 0) LED(1,1); break; case 1: if (trackchange != 0) { if (mode == 0) LED(2,0); } else if (mode == 0) LED(2,1); break; case 2: if (trackchange != 0) { if (mode == 0) LED(4,0); } else if (mode == 0) LED(4,1); break; case 3: if (trackchange != 0) { if (mode == 0) LED(5,0); } else if (mode == 0) LED(5,1); break; } tmp |= (0b1000000000 | (controller << 6)); // FUEL BIT GETS SET WHEN FUEL == 0, // THIS REQUIRES PHYSICAL CAR FUEL LEVEL SET TO ZERO BEFORE! if ( ((PIN(SW_FUEL_PORT) & _BV(SW_FUEL)) != 0) | (slot[controller].fuel == 0)) tmp |= 1; if (insert_queue(tmp, 9)) { if ((switches.fuel_enabled) && (slot[controller].unlimitedfuel == 0)) { if ((speed != 0) && (fuel_divisor > 0)) { // do the fuel calculation, regardless if fuel logic active or not tmp = (uint8_t)(((slot[controller].accel * speed) + 1) / fuel_divisor); if (tmp == 0) tmp = 1; if (slot[controller].fuel > 0) { // enough fuel left to decrement? if (slot[controller].fuel > tmp) { slot[controller].fuel -= tmp; // decrement fuel level } else slot[controller].fuel = 0; } } else if (slot[controller].canrefuel) { // increase fuel by 5%/sec, this equals by adding 50 to the counter slot[controller].fuel += 50; if (slot[controller].fuel > FUEL_FULL) { slot[controller].fuel = FUEL_FULL; slot[controller].canrefuel = 0; } } return 1; } return 1; } else return 0; } uint8_t mirror( uint8_t n ) { n = ((n >> 1) & 0x55) | ((n << 1) & 0xaa); n = ((n >> 2) & 0x33) | ((n << 2) & 0xcc); n = ((n >> 4) & 0x0f) | ((n << 4) & 0xf0); return n; } int do_program(uint8_t controller, uint8_t command, uint8_t parameter) { // send program data packet uint16_t tmp; parameter = mirror(parameter); controller = mirror(controller); command = mirror(command); tmp = 0b1000000000000 | (parameter << 4) | command | (controller >> 5); return insert_queue(tmp, 12); } int do_active(void) { // send controller active data packet uint16_t tmp = 0b10000000; if ( (PIN(SW_PACECAR_PORT) & _BV(SW_PACECAR)) == 0 ) { // map controller 1+2 to 5+6 if ((getADC(CONTROLLER1_SPEED) / CONTROLLER_DIVISOR) > 0) tmp |= 0b10000101; if ((getADC(CONTROLLER2_SPEED) / CONTROLLER_DIVISOR) > 0) tmp |= 0b10000011; } else { if ((slot[0].speedminimum != 0) || ((getADC(CONTROLLER1_SPEED) / CONTROLLER_DIVISOR) > 0)) tmp |= 0b11000001; if ((slot[1].speedminimum != 0) || ((getADC(CONTROLLER2_SPEED) / CONTROLLER_DIVISOR) > 0)) tmp |= 0b10100001; if ((slot[2].speedminimum != 0) || ((getADC(CONTROLLER3_SPEED) / CONTROLLER_DIVISOR) > 0)) tmp |= 0b10010001; if ((slot[3].speedminimum != 0) || ((getADC(CONTROLLER4_SPEED) / CONTROLLER_DIVISOR) > 0)) tmp |= 0b10001001; if (slot[4].speedminimum != 0) tmp |= 0b10000101; if (slot[5].speedminimum != 0) tmp |= 0b10000011; } // TODO: wenn Daten enpfangen wurden hier eine Quittierung senden anstatt dem Active Word return insert_queue(tmp, 7); } int do_pace_ghost(void) { // send ghost and pacecar data packet // todo: at the moment, both disabled! uint16_t tmp = 0b1111100000; if ( (PIN(SW_FUEL_PORT) & _BV(SW_FUEL)) != 0) tmp |= 1; // benzinstand aktiv - tankmodusschalter // todo: PC, NH, TK, (KFR, FR) return insert_queue(tmp, 9); } #include "interrupts.c" void reset_vars(void) { uint8_t i; for (i=0; i<MAX_SLOTS; i++) { slot[i].speedlimit = 15; //slot[i].speedminimum = 0; // issue #688 slot[i].trackswitch = 0; slot[i].fuel = FUEL_FULL; slot[i].jumpstart_time = 0; slot[i].laps = 0; slot[i].seccnt = 0; slot[i].accel = 15; // full acceleration per default - TODO slot[i].canrefuel = 0; slot[i].pitlane_limit = PITLANE_SPEEDLIMIT; if (i<4) slot[i].unlimitedfuel = 0; else slot[i].unlimitedfuel = 1; slot[i].lap_time_start.value = 0; slot[i].lap_time.value = 0; } sysclk.value = 0; } void LED_REMOTE(uint8_t led) { program_id = 6; program_command = 0; program_parameter = led; program_count = 1; } void countdown_progress(void) { // decrement COUNTDOWN_LOOPS if (countdown_loops>0) { countdown_loops--; } else { countdown--; countdown_loops = COUNTDOWN_DELAY; } switch (countdown) { case 5: LED(1, 1); LED_REMOTE(1); break; case 4: LED(2, 1); LED_REMOTE(2); break; case 3: LED(3, 1); LED_REMOTE(3); break; case 2: LED(4, 1); LED_REMOTE(4); break; case 1: LED(5, 1); LED_REMOTE(5); break; case 0: { // RACE START! sysclk.value = 0; LEDS_OFF(); LED(3, 1); LED_REMOTE(0); mode = 3; } break; } } void check_cars(void) { u32 clk, diff; u16 laps; clk.value = sysclk.value; // freeze system clock time if (car0 != car0_state) { car0_state = car0; if (car0_state != 0) { diff.value = clk.value - slot[car0-1].lap_time_start.value; if ( diff.value > FINISHLINE_DIFF_BLOCK ) { if (slot[car0-1].lap_time_start.value != 0) { slot[car0-1].lap_time.value = diff.value; slot[car0-1].laps++; laps.value = slot[car0-1].laps; // New binary protocol: RS232_puts("L:\n"); RS232_putc(12); // binary bytes following RS232_putc(3); // 3 = Track BB RS232_putc(laps.byte[1]); RS232_putc(laps.byte[0]); RS232_putc(car0_state); // slot number RS232_putc(diff.byte[3]); RS232_putc(diff.byte[2]); RS232_putc(diff.byte[1]); RS232_putc(diff.byte[0]); RS232_putc(sysclk.byte[3]); RS232_putc(sysclk.byte[2]); RS232_putc(sysclk.byte[1]); RS232_putc(sysclk.byte[0]); RS232_putc('\n'); } slot[car0-1].lap_time_start.value = clk.value; } } } car0 = 0; if (car1 != car1_state) { car1_state = car1; if (car1_state != 0) { diff.value = clk.value - slot[car1-1].lap_time_start.value; if ( diff.value > FINISHLINE_DIFF_BLOCK ) { if (slot[car1-1].lap_time_start.value != 0) { slot[car1-1].lap_time.value = diff.value; slot[car1-1].laps++; laps.value = slot[car1-1].laps; // New binary protocol: RS232_puts("L:\n"); RS232_putc(12); // binary bytes following RS232_putc(1); // 1 = Track AA RS232_putc(laps.byte[1]); RS232_putc(laps.byte[0]); RS232_putc(car1_state); // slot number RS232_putc(diff.byte[3]); RS232_putc(diff.byte[2]); RS232_putc(diff.byte[1]); RS232_putc(diff.byte[0]); RS232_putc(sysclk.byte[3]); RS232_putc(sysclk.byte[2]); RS232_putc(sysclk.byte[1]); RS232_putc(sysclk.byte[0]); RS232_putc('\n'); } slot[car1-1].lap_time_start.value = clk.value; } } } car1 = 0; } void slot_liveinfo(uint8_t idx) { if (switches.liveinfo == 0) return; u16 fuel; if (switches.liveinfo == 1) { // increment packet counter, if == 10 output some live info if (slot[idx].seccnt == 10) { // output current fuel status fuel.value = slot[idx].fuel; // new Binary protocol: RS232_puts("F:\n"); RS232_putc(7); // binary bytes following RS232_putc(idx); // slot RS232_putc(fuel.byte[1]); RS232_putc(fuel.byte[0]); RS232_putc(sysclk.byte[3]); RS232_putc(sysclk.byte[2]); RS232_putc(sysclk.byte[1]); RS232_putc(sysclk.byte[0]); RS232_putc('\n'); slot[idx].seccnt = 0; } else slot[idx].seccnt++; } else if ( (switches.liveinfo - 2) == idx ) { // output controller status LIVEINFO-2 for remote learning // TODO: old ascii protocol RS232_putc('L'); RS232_putc('N'); RS232_putc(':'); itoa(slot[idx].speed, s, 16); RS232_puts(s); RS232_putc(':'); if (slot[idx].trackchange) RS232_putc('X'); RS232_putc('\n'); } } int main(void) { uint8_t packet_index = 1; switches.fuel_enabled = 0; switches.pitlane_finishline = 0; switches.liveinfo = 0; init_hardware(); reset_vars(); LED(3, 1); // enable middle led == idle mode // switch on rails power RAIL_POWER_PORT |= _BV(RAIL_POWER); while (1) { // check for short circuit on the rails check_rails_shortcut(); check_cars(); while (mode == 0xff) panic_mode(); if (response_len > 0) { //TODO: Track response data??? //itoa(response, s, 2); response_len = 0; //RS232_puts("ANSWER RX: "); //RS232_puts(s); //RS232_putc('\n'); } // read in button presses btn_start = (PIN(SW_START_PORT) & _BV(SW_START)); if (old_start != btn_start) { // start button changed if (btn_start == 0) startbutton(); old_start = btn_start; } if (mode==3) { // RACE START! // issue reset command to lap counter mode = 0; RS232_puts_p(racestart); /* BUG?? program_command = 6; program_parameter = 9; program_id = 0; program_count = 1; */ LAP_COUNTER_PORT |= _BV(LAP_COUNTER); // TODO: beep long _delay_us(50); LAP_COUNTER_PORT &= ~_BV(LAP_COUNTER); } switch (packet_index) { case 1: if (program_count > 0) { // command in queue if (do_program(program_id, program_command, program_parameter)) { packet_index++; program_count--; } } else { // output idle command if (do_program(7, 19, 0)) packet_index++; // reset //if (do_program(7, 20, 15)) packet_index++; // reset / pitstop detect //if (insert_queue(0, 0)) packet_index++; // null command } if ( (packet_index>1) && (mode == 2) ) countdown_progress(); break; case 2: if (do_pace_ghost()) packet_index++; break; case 3: if (do_active()) packet_index++; break; case 4: if (do_controller(0)) { packet_index++; slot_liveinfo(0); } break; case 5: if (do_controller(4)) { packet_index++; slot_liveinfo(4); } break; case 6: if (do_controller(1)) { packet_index++; slot_liveinfo(1); } break; case 7: if (do_controller(5)) { packet_index++; slot_liveinfo(5); } break; case 8: if (do_controller(2)) { packet_index++; slot_liveinfo(2); } break; case 9: if (do_active()) packet_index++; break; case 10: if (do_controller(3)) { packet_index = 1; slot_liveinfo(3); } // last packet, so reset packet index break; } } // main loop end };