Sat, 17 Dec 2011 15:12:19 +0100
improved live display with colors
#include <avr/interrupt.h> #include <avr/io.h> #include <avr/wdt.h> #include <avr/eeprom.h> #include <stdlib.h> #include <stdint.h> #include <avr/pgmspace.h> #include "main.h" #include "driver/rs232.h" #include "util/delay.h" ISR ( USART_RXC_vect ) { } void solenoid_delay(void) { _delay_ms(2); } // TODO: TYPE should be configured somewhere else #define TRACKSWITCH_TYPE 1 // 1=double, 2=single left, 3=single right, 4=pitlane #define TYPE_DOUBLE 1 #define TYPE_SINGLE_L 2 #define TYPE_SINGLE_R 3 #define TYPE_PITLANE 4 #define PULSE_PORT PORTD #define PULSE_BIT PD2 #define RESPONSE_PORT PORTC #define RESPONSE_PIN PC1 #define SOLENOID_A_PORT PORTB #define SOLENOID_B_PORT PORTB #ifdef WE_HAVE_TO_REVERSE_PORTS_ON_DOUBLE_SWITCH //#if (TRACKSWITCH_TYPE == TYPE_DOUBLE) // switch outputs - note: car0+1 have also be swapped! // todo in future #define SOLENOID_A_PIN PB2 #define SOLENOID_B_PIN PB1 #else #define SOLENOID_A_PIN PB1 #define SOLENOID_B_PIN PB2 #endif // internal analog comparator doesnt work well //#define ANALOG_COMPARATOR 1 volatile uint16_t data = 0; volatile uint8_t data_len = 0; volatile uint8_t bitbuf_len = 0; volatile uint16_t bitbuf = 0; volatile uint8_t car_speed[8]; volatile uint8_t car_switch[8]; volatile uint16_t car0, car1; volatile uint16_t car0_new, car0_old; volatile uint16_t car1_new, car1_old; volatile uint8_t response = 0; uint8_t self_id = 2; // TODO - muss ermittelt werden und systemweit eindeutig sein void send_response(uint16_t data) { /* frame format: 1 startbit 2 car id 3 car id 4 car id 5 track change status bit 1 6 track change status bit 2 7 sender id 8 sender id 9 sender id 9 sender id 10 device type 11 device type 12 device type 13 device type 14 reserved 15 reserved 16 stopbit */ uint8_t index = 16; // bit count maximum uint8_t enable = DDR(RESPONSE_PORT) | _BV(RESPONSE_PIN); uint8_t disable = DDR(RESPONSE_PORT) & ~_BV(RESPONSE_PIN); data |= 0b100000000000001; // make sure start/stop bits are set while (index != 0) { if ((data & 1) != 0) { DDR(RESPONSE_PORT) = enable; // enable response output } else { DDR(RESPONSE_PORT) = disable; // disable response output } data = data >> 1; // next bit prepare index--; // decrement index _delay_us(49); // bit valid phase } // finally be sure to release the bus! DDR(RESPONSE_PORT) = disable; // disable response output } ISR ( INT0_vect ) { GICR &= ~_BV(INT0) ; // Disable INT0 // Startsignal erkannt, ab hier den Timer2 starten, // der liest dann alle 50µs den Zustand ein und schreibt das // empfangene Bit in den Puffer bitbuf = 0; // init bitbuf_len = 0b10000000; // init 1 pulse received TCNT2 = 0; TIMSK |= _BV(OCIE2); //enable timer2 interrupt } ISR ( TIMER2_COMP_vect ) { uint8_t clock; uint8_t state; uint8_t state2; if ((bitbuf_len & 0b10000000) == 0) clock = 0; else clock = 0xff; if ((bitbuf_len & 0b01000000) == 0) state = 0; else state = 0xff; if ((PIN(PULSE_PORT) & _BV(PULSE_BIT)) == 0) state2 = 0xff; else state2 = 0; if (clock) { bitbuf_len &= ~_BV(7); // switch clock to low // second pulse of bit if ((state==state2) & state2) { // two cycles high: packet end received data_len = (bitbuf_len & 0b00111111); TIMSK &= ~_BV(OCIE2); //disable timer2 interrupt GICR |= _BV(INT0) ; // Enable INT0 //data = bitbuf; // output data // write data of controllers to array if (data_len == 10) { // controller data packet clock = (bitbuf >> 6) & 0b00000111; car_speed[clock] = (bitbuf >> 1) & 0x0F; car_switch[clock] = (bitbuf >> 5) & 1; // current response for this car? if (response != 0) { if ( ((response & 0b00001110) >> 1) == clock) { // add our ID to response: send_response(response | self_id << 6); response = 0; } } } } else { bitbuf_len++; // increment bit counter bitbuf = bitbuf << 1; // shift bits if (state2 == 0) bitbuf |= 1; // receive logic one } } else { bitbuf_len |= _BV(7); // switch clock to high // first pulse of bit if (state2) { bitbuf_len |= _BV(6); // store new state } else { bitbuf_len &= ~_BV(6); // store new state } } } ISR (TIMER1_OVF_vect) { // reset both car counters to overflow car0_old = 0xffff; car1_old = 0xffff; } ISR (INT1_vect) { // car0 detector uint16_t tmp = 0; car0_new = TCNT1; // get current counter if (car0_old < car0_new) { // calculate difference if (car0 == 0) tmp = car0_new-car0_old; if ( (tmp > 54) && (tmp < 74) ) car0 = 1; if ( (tmp > 118) && (tmp < 138) ) car0 = 2; if ( (tmp > 186) && (tmp < 206) ) car0 = 3; if ( (tmp > 246) && (tmp < 266) ) car0 = 4; if ( (tmp > 310) && (tmp < 330) ) car0 = 5; if ( (tmp > 374) && (tmp < 394) ) car0 = 6; } car0_old = car0_new; } // ISR (TIMER1_CAPT_vect) { #ifdef ANALOG_COMPARATOR ISR (ANA_COMP_vect) { // car1 detector uint16_t tmp = 0; car1_new = TCNT1; // get current counter if (car1_old < car1_new) { // calculate difference if (car1 == 0) tmp = car1_new-car1_old; if ( (tmp > 50) && (tmp < 78) ) car1 = 1; if ( (tmp > 114) && (tmp < 146) ) car1 = 2; if ( (tmp > 183) && (tmp < 210) ) car1 = 3; if ( (tmp > 242) && (tmp < 270) ) car1 = 4; if ( (tmp > 310) && (tmp < 330) ) car1 = 5; if ( (tmp > 374) && (tmp < 394) ) car1 = 6; } car1_old = car1_new; } #else // ALTERNATIV: ISR (TIMER1_CAPT_vect) { // car1 detector uint16_t tmp = 0; car1_new = TCNT1; // get current counter if (car1_old < car1_new) { // calculate difference if (car1 == 0) tmp = car1_new-car1_old; if ( (tmp > 50) && (tmp < 78) ) car1 = 1; if ( (tmp > 114) && (tmp < 146) ) car1 = 2; if ( (tmp > 183) && (tmp < 210) ) car1 = 3; if ( (tmp > 242) && (tmp < 270) ) car1 = 4; if ( (tmp > 310) && (tmp < 330) ) car1 = 5; if ( (tmp > 374) && (tmp < 394) ) car1 = 6; } car1_old = car1_new; } #endif int main(void) { uint8_t car0_state, car1_state; // setup data bit timer2 TCCR2 = (1<<CS21) | (1<<WGM21); //divide by 8, set compare match OCR2 = TIMER2_50US; // initialize timer1 for IR signal detection #ifdef ANALOG_COMPARATOR TCCR1B = _BV(CS01) ; // 1mhz clock TIMSK = _BV(OCIE2) | _BV(TOIE1) ; //enable timer1+2 #else TCCR1B = _BV(CS01) | _BV(ICNC1) | _BV(ICES1); // 1mhz clock, enable ICP on rising edge TIMSK = _BV(OCIE2) | _BV(TOIE1) | _BV(TICIE1); //enable timer1+2 / ICP1 #endif // enable both external interrupts // int 0 = data RX // int 1 = car0 input MCUCR = _BV(ISC00) | _BV(ISC01) | _BV(ISC10) | _BV(ISC11); // INT0/1 rising edge GICR = _BV(INT0) | _BV(INT1) ; // Enable INT0 + INT1 #ifdef ANALOG_COMPARATOR ACSR = _BV(ACIE) | _BV(ACIS1) | _BV(ACIS0); // setup analog comparator #endif // oscillator calibration // atmega8@1mhz = 0xac // @4mhz = ca 0xa0 //OSCCAL = 0xa0; //OSCCAL = 0x9A; //OSCCAL = 0xa0; // internal oscillator @ 4 mhz.... doesnt work accurate! RS232_init(); // initialize RS232 interface RS232_puts_p(PSTR("Freeslot TrackSwitch v1.3\n")); sei(); DDR(SOLENOID_A_PORT) |= _BV(SOLENOID_A_PIN); DDR(SOLENOID_B_PORT) |= _BV(SOLENOID_B_PIN); DDR(RESPONSE_PORT) &= ~_BV(RESPONSE_PIN); // switch response off RESPONSE_PORT &= ~_BV(RESPONSE_PIN); // switch response off while (1) { // main loop /* 0 = AA 1 = AB 2 = BB 3 = BA */ if (car0 != car0_state) { car0_state = car0; #if (TRACKSWITCH_TYPE == TYPE_DOUBLE) || (TRACKSWITCH_TYPE == TYPE_SINGLE_R) if ( (car0_state != 0) && (car_switch[car0_state-1] == 0) && (car_speed[car0_state-1]>0) ) { response = (1 | ((car0_state-1)<<1) | (1 << 4)); // trigger solenoid A RS232_putc('A'); RS232_putc('B'); RS232_putc('0'+car0_state); RS232_putc('\n'); SOLENOID_A_PORT |= _BV(SOLENOID_A_PIN); solenoid_delay(); SOLENOID_A_PORT &= ~_BV(SOLENOID_A_PIN); solenoid_delay(); } else #endif if (car0_state != 0) { response = (1 | ((car0_state-1)<<1)); RS232_putc('A'); RS232_putc('A'); RS232_putc('0'+car0_state); RS232_putc('\n'); } } car0 = 0; if (car1 != car1_state) { car1_state = car1; #if (TRACKSWITCH_TYPE == TYPE_DOUBLE) || (TRACKSWITCH_TYPE == TYPE_SINGLE_L) if ( (car1_state != 0) && (car_switch[car1_state-1] == 0) && (car_speed[car1_state-1]>0) ) { response = (1 | ((car1_state-1)<<1) | (3 << 4)); // trigger solenoid B RS232_putc('B'); RS232_putc('A'); RS232_putc('0'+car1_state); RS232_putc('\n'); SOLENOID_B_PORT |= _BV(SOLENOID_B_PIN); solenoid_delay(); SOLENOID_B_PORT &= ~_BV(SOLENOID_B_PIN); solenoid_delay(); } else #endif if (car1_state != 0) { response = (1 | ((car1_state-1)<<1) | (2 << 4)); RS232_putc('B'); RS232_putc('B'); RS232_putc('0'+car1_state); RS232_putc('\n'); } } car1 = 0; } // main loop end };