Tue, 25 Jun 2013 22:18:17 +0200
Added tag FIRMWARE_BEFORE_BINARY_COMMUNICATION for changeset 94d71156517b
#include <avr/interrupt.h> #include <avr/io.h> #include <avr/wdt.h> #include <avr/eeprom.h> #include <stdlib.h> #include <stdint.h> #include <avr/pgmspace.h> #include "main.h" #include "driver/rs232.h" #include "util/delay.h" ISR ( USART_RXC_vect ) { } #define PULSE_PORT PORTD #define PULSE_BIT PD2 #define RESPONSE_PORT PORTC #define RESPONSE_PIN PC1 #define SOLENOID_A_PORT PORTB #define SOLENOID_B_PORT PORTB #define SOLENOID_A_PIN PB1 #define SOLENOID_B_PIN PB2 #define TRACKSWITCH_TYPE 4 // 1=double, 2=single left, 3=single right, 4=pitlane #define TYPE_DOUBLE 1 #define TYPE_SINGLE_L 2 #define TYPE_SINGLE_R 3 #define TYPE_PITLANE 4 #define MAX_SENSORS 3 #define PIT_PORT PORTC #define PIT_CONNECT_PIN PC3 #define PIT_GROUND_PIN PC2 // low active #define SENS2_PORT PORTD #define SENS2_PIN PD5 #define LED_PORT PORTB #define LED_PIN PB5 // internal analog comparator doesnt work well //#define ANALOG_COMPARATOR 1 typedef struct { unsigned speed:4; unsigned trackswitch:1; unsigned inside:1; } cardata; typedef struct { unsigned car:4; unsigned state:4; uint16_t old, new; } sensordata; volatile cardata slot[MAX_SLOTS]; volatile sensordata sens[MAX_SENSORS]; volatile uint16_t data = 0; volatile uint8_t data_len = 0; volatile uint8_t bitbuf_len = 0; volatile uint16_t bitbuf = 0; volatile uint8_t response = 0; volatile uint8_t response_car = 0; uint8_t self_id = 0b1111; // ONLY ONE pitlane void solenoid_delay(void) { _delay_ms(2); } void send_response(uint8_t car, uint8_t status) { /* frame format: 1 startbit 2 car id bit 1 3 car id bit 2 4 car id bit 3 5 track change status bit 1 6 track change status bit 2 7 track change status bit 3 8 track change status bit 4 9 sender id bit 1 10 sender id bit 2 11 sender id bit 3 12 sender id bit 4 13 device type bit 1 14 device type bit 2 15 device type bit 3 16 stopbit */ uint16_t data; // produce packet data = ((car & 0b111) << 1) | ((status & 0b1111) << 4) | ((self_id & 0b1111) << 8) | (TRACKSWITCH_TYPE << 12); data |= 0b100000000000001; // make sure start/stop bits are set uint8_t index = 16; // bit count maximum uint8_t enable = DDR(RESPONSE_PORT) | _BV(RESPONSE_PIN); uint8_t disable = DDR(RESPONSE_PORT) & ~_BV(RESPONSE_PIN); while (index != 0) { if ((data & 1) != 0) { DDR(RESPONSE_PORT) = enable; // enable response output } else { DDR(RESPONSE_PORT) = disable; // disable response output } data = data >> 1; // next bit prepare index--; // decrement index _delay_us(49); // bit valid phase } // finally be sure to release the bus! DDR(RESPONSE_PORT) = disable; // disable response output } ISR ( INT0_vect ) { GICR &= ~_BV(INT0) ; // Disable INT0 // Startsignal erkannt, ab hier den Timer2 starten, // der liest dann alle 50µs den Zustand ein und schreibt das // empfangene Bit in den Puffer bitbuf = 0; // init bitbuf_len = 0b10000000; // init 1 pulse received TCNT2 = 0; TIMSK |= _BV(OCIE2); //enable timer2 interrupt } ISR ( TIMER2_COMP_vect ) { uint8_t clock; uint8_t state; uint8_t state2; if ((bitbuf_len & 0b10000000) == 0) clock = 0; else clock = 0xff; if ((bitbuf_len & 0b01000000) == 0) state = 0; else state = 0xff; if ((PIN(PULSE_PORT) & _BV(PULSE_BIT)) == 0) state2 = 0xff; else state2 = 0; if (clock) { bitbuf_len &= ~_BV(7); // switch clock to low // second pulse of bit if ((state==state2) & state2) { // two cycles high: packet end received data_len = (bitbuf_len & 0b00111111); TIMSK &= ~_BV(OCIE2); //disable timer2 interrupt GICR |= _BV(INT0) ; // Enable INT0 //data = bitbuf; // output data // write data of controllers to array if (data_len == 10) { // controller data packet clock = (bitbuf >> 6) & 0b00000111; slot[clock].speed = (bitbuf >> 1) & 0x0F; slot[clock].trackswitch = (bitbuf >> 5) & 1; // current response for this car? if (response != 0) { if ( response_car == clock) { // add our ID to response: send_response(clock, response); response = 0; } } } } else { bitbuf_len++; // increment bit counter bitbuf = bitbuf << 1; // shift bits if (state2 == 0) bitbuf |= 1; // receive logic one } } else { bitbuf_len |= _BV(7); // switch clock to high // first pulse of bit if (state2) { bitbuf_len |= _BV(6); // store new state } else { bitbuf_len &= ~_BV(6); // store new state } } } ISR (TIMER1_OVF_vect) { // reset car counters to overflow uint8_t i; for (i=0;i<MAX_SENSORS;i++) sens[i].old = 0xffff; } void detect_car(uint8_t idx) { uint16_t tmp = 0; sens[idx].new = TCNT1; // get current counter if (sens[idx].old < sens[idx].new) { // calculate difference if (sens[idx].car == 0) tmp = sens[idx].new-sens[idx].old; if ( (tmp > 54) && (tmp < 74) ) tmp = 1; else if ( (tmp > 118) && (tmp < 138) ) tmp = 2; else if ( (tmp > 186) && (tmp < 206) ) tmp = 3; else if ( (tmp > 246) && (tmp < 266) ) tmp = 4; else if ( (tmp > 310) && (tmp < 330) ) tmp = 5; else if ( (tmp > 374) && (tmp < 394) ) tmp = 6; else tmp = 0; sens[idx].car = tmp; } sens[idx].old = sens[idx].new; } ISR (INT1_vect) { // car0 detector detect_car(0); } #ifdef ANALOG_COMPARATOR ISR (ANA_COMP_vect) { // car1 detector detect_car(1); } #else // ALTERNATIV: ISR (TIMER1_CAPT_vect) { // car1 detector detect_car(1); } #endif int main(void) { uint8_t tmp; // setup data bit timer2 TCCR2 = (1<<CS21) | (1<<WGM21); //divide by 8, set compare match OCR2 = TIMER2_50US; // initialize timer1 for IR signal detection #ifdef ANALOG_COMPARATOR TCCR1B = _BV(CS01) ; // 1mhz clock TIMSK = _BV(OCIE2) | _BV(TOIE1) ; //enable timer1+2 #else TCCR1B = _BV(CS01) | _BV(ICNC1) | _BV(ICES1); // 1mhz clock, enable ICP on rising edge TIMSK = _BV(OCIE2) | _BV(TOIE1) | _BV(TICIE1); //enable timer1+2 / ICP1 #endif // enable both external interrupts // int 0 = data RX // int 1 = car0 input MCUCR = _BV(ISC00) | _BV(ISC01) | _BV(ISC10) | _BV(ISC11); // INT0/1 rising edge GICR = _BV(INT0) | _BV(INT1) ; // Enable INT0 + INT1 #ifdef ANALOG_COMPARATOR ACSR = _BV(ACIE) | _BV(ACIS1) | _BV(ACIS0); // setup analog comparator #endif // oscillator calibration // atmega8@1mhz = 0xac // @4mhz = ca 0xa0 //OSCCAL = 0xa0; //OSCCAL = 0x9A; //OSCCAL = 0xa0; // internal oscillator @ 4 mhz.... doesnt work accurate! RS232_init(); // initialize RS232 interface RS232_puts_p(PSTR("Freeslot TrackSwitch / Pitlane v1.4\n")); sei(); DDR(SOLENOID_A_PORT) |= _BV(SOLENOID_A_PIN); DDR(SOLENOID_B_PORT) |= _BV(SOLENOID_B_PIN); DDR(RESPONSE_PORT) &= ~_BV(RESPONSE_PIN); // switch response off RESPONSE_PORT &= ~_BV(RESPONSE_PIN); // switch response off // setup pitlane output DDR(PIT_PORT) |= _BV(PIT_CONNECT_PIN) | _BV(PIT_GROUND_PIN); // setup LED DDR(LED_PORT) |= _BV(LED_PIN); LED_PORT |= _BV(LED_PIN); // switch LED off // CONNECT PITLANE TO MAIN TRACK PIT_PORT &= ~_BV(PIT_CONNECT_PIN); PIT_PORT |= _BV(PIT_GROUND_PIN); while (1) { // main loop /* 1 = AA 2 = AB 3 = BB 4 = BA 5 = BC 6 = ZZ -> pitlane exit */ if (sens[0].car != sens[0].state) { sens[0].state = sens[0].car; #if (TRACKSWITCH_TYPE != TYPE_PITLANE) if ( (sens[0].state != 0) && (slot[sens[0].state-1].trackswitch == 0) && (slot[sens[0].state-1].speed>0) ) { response = 2; response_car = sens[0].state - 1; // set inside status slot[sens[0].state].inside = 1; // trigger solenoid A RS232_putc('A'); RS232_putc('B'); RS232_putc('0'+sens[0].state); RS232_putc('\n'); SOLENOID_A_PORT |= _BV(SOLENOID_A_PIN); solenoid_delay(); SOLENOID_A_PORT &= ~_BV(SOLENOID_A_PIN); solenoid_delay(); } else #endif if (sens[0].state != 0) { response = 1; response_car = sens[0].state - 1; RS232_putc('A'); RS232_putc('A'); RS232_putc('0'+sens[0].state); RS232_putc('\n'); } } sens[0].car = 0; if (sens[1].car != sens[1].state) { sens[1].state = sens[1].car; if ( (sens[1].state != 0) && (slot[sens[1].state-1].trackswitch == 0) && (slot[sens[1].state-1].speed>0) ) { response = 5; response_car = sens[1].state - 1; // set inside status slot[sens[1].state-1].inside = 1; // trigger solenoid B RS232_putc('B'); RS232_putc('C'); RS232_putc('0'+sens[1].state); RS232_putc('\n'); SOLENOID_B_PORT |= _BV(SOLENOID_B_PIN); solenoid_delay(); SOLENOID_B_PORT &= ~_BV(SOLENOID_B_PIN); solenoid_delay(); } else if (sens[1].state != 0) { response = 3; response_car = sens[1].state - 1; RS232_putc('B'); RS232_putc('B'); RS232_putc('0'+sens[1].state); RS232_putc('\n'); } } sens[1].car = 0; // TODO: At the moment, all "inside" cars gets exit response, but probably only the last response will be sent // we have to detect which car is passing sensor2 - but at the moment we are lack of external interrupt source if ( (PIN(SENS2_PORT) & _BV(SENS2_PIN)) != 0 ) { // set inside status for (tmp=0; tmp<MAX_SLOTS; tmp++) { // workaround: only reset tanking on cars which have speed>0, so parking cars will not get "outside" if (slot[tmp].inside && (slot[tmp].speed > 0)) { slot[tmp].inside = 0; response = 7; response_car = tmp; } } //response = 6; //response_car = 0; RS232_puts_p(PSTR("PIT:EXIT\n")); } if (sens[2].car != sens[2].state) { sens[2].state = sens[2].car; if (sens[2].state != 0) { response = 6; response_car = sens[2].state-1; // set inside status slot[sens[2].state-1].inside = 0; RS232_putc('Z'); RS232_putc('Z'); RS232_putc('0'+sens[2].state); RS232_putc('\n'); } } sens[2].car = 0; // enable LED when car is in pitlane LED_PORT |= _BV(LED_PIN); for (tmp=0; tmp<MAX_SLOTS; tmp++) if (slot[tmp].inside) LED_PORT &= ~_BV(LED_PIN); } // main loop end };