Sat, 10 Dec 2011 14:12:09 +0100
implemented responsewire in CU firmware
#include <avr/interrupt.h> #include <avr/io.h> #include <avr/wdt.h> #include <avr/eeprom.h> #include <stdlib.h> #include <stdint.h> #include <avr/pgmspace.h> #include <util/delay.h> #include "driver/rs232.h" #include "driver/adc.h" #include "main.h" #include "lowlevel.h" char ok[] PROGMEM="OK\n"; char busy[] PROGMEM="BUSY\n"; char prepare[] PROGMEM="!RACE PREPARE\n"; char countdownstart[] PROGMEM="!COUNTDOWN\n"; char racestart[] PROGMEM="!RACE START\n"; typedef union { uint32_t value; uint16_t word[2]; // high, low word uint8_t byte[4]; // all four bytes } u32; #define FUEL_FULL 10000 #define FUEL_DIVISOR 25 //#define FUEL_DIVISOR 10 typedef struct { unsigned speedlimit:4; // 4bits speedlimit unsigned speedminimum:4; // 4bits speedminimum unsigned seccnt:4; // 4 bits tenth seconds counter unsigned accel:4; // 4 bits last configured acceleration unsigned trackswitch:1; // 1bit bool unsigned canrefuel:1; // 1bit bool uint16_t jumpstart_time, laps, fuel; u32 lap_time_start, lap_time; } cardata; static char s[8]; static uint8_t countdown, countdown_loops; uint8_t mode = 0; // valid race modes: // 0: free drive / idle // 1: waiting for countdown start // 2: race countdown initiated // 3: Race start condition volatile u32 sysclk; volatile uint8_t sysclk_packettimer = 0; volatile cardata slot[MAX_SLOTS]; volatile uint8_t car0, car1; volatile uint16_t car0_new, car0_old; volatile uint16_t car1_new, car1_old; uint8_t car0_state, car1_state; volatile uint8_t program_count = 0; volatile uint8_t program_id; volatile uint8_t program_command; volatile uint8_t program_parameter; volatile uint8_t datalen = 0; char data[10]; // 8 bytes data buffer + string termination static char buffer[RS232_BUFSIZE+1]; static uint8_t buffer_len; volatile uint16_t transmit_buffer; volatile uint16_t transmit_buffer_queue; volatile uint8_t transmit_len; volatile uint8_t transmit_len_next; volatile uint8_t transmit_len_queue; volatile uint16_t responsewire_data = 0; volatile uint16_t response; volatile uint8_t response_len; volatile uint8_t timer0_delay; int insert_queue(uint16_t tmp, uint8_t len) { if (transmit_buffer_queue == 0) { transmit_buffer_queue = tmp; transmit_len_queue = len; return 1; } return 0; } ISR ( USART_RXC_vect ) { uint8_t tmp; char c = UDR; // check for buffer overflow if (buffer_len==sizeof(buffer)) { buffer_len=0; } else { // collect characters until end of line if ( (c=='\n') ) { buffer[buffer_len]=0; // packet end received, parse the received packet switch (buffer[0]) { case 'P': // inject a program data word to the rails if (program_count == 0) { program_id = buffer[3]-'0'; program_command = buffer[1]-'0'; if (program_command > 9) program_command = buffer[1]-'A'+10; program_parameter = buffer[2]-'0'; if (program_parameter > 9) program_parameter = buffer[2]-'A'+10; if (program_command < 4) program_count = 0x02; // send commands twice (fuel, speed, brake) else program_count = 0x01; RS232_puts_p(ok); } else RS232_puts_p(busy); break; case 'L': // Limit maximum speed for a car tmp = buffer[2]-'0'; if (tmp > 9) tmp = buffer[2]-'A'+10; slot[buffer[1]-'0'].speedlimit = tmp; RS232_puts_p(ok); break; case 'S': // set minimum speed for a car tmp = buffer[2]-'0'; if (tmp > 9) tmp = buffer[2]-'A'+10; slot[buffer[1]-'0'].speedminimum = tmp; RS232_puts_p(ok); break; case 'I': // get Information data (incl. important global parameter dump) RS232_puts(VERSION); RS232_putc(':'); for (tmp=0;tmp<MAX_SLOTS;tmp++) RS232_putc(slot[tmp].speedlimit); // output speed limits RS232_putc(':'); for (tmp=0;tmp<MAX_SLOTS;tmp++) RS232_putc(slot[tmp].speedminimum); // output minimum speed RS232_putc(':'); for (tmp=0;tmp<MAX_SLOTS;tmp++) { itoa(slot[tmp].fuel, s, 16); RS232_putc(s); // output fuel levels (0=empty, 100=full, 0xff=no fuel option) RS232_putc(','); } RS232_putc(':'); for (tmp=0;tmp<MAX_SLOTS;tmp++) { itoa(slot[tmp].jumpstart_time, s, 16); RS232_puts(s); // output jumpstart times RS232_putc(','); } RS232_putc(':'); RS232_putc('\n'); break; } // wait for the next packet buffer_len=0; } else { buffer[buffer_len++]=c; } } } void jumpstart(uint8_t controller) { if (slot[controller].jumpstart_time == 0) { slot[controller].jumpstart_time = sysclk.word[0]; // low word RS232_putc('~'); RS232_putc('0'-controller); RS232_putc(':'); itoa(slot[controller].jumpstart_time, s, 16); RS232_puts(s); RS232_putc('\n'); } } uint8_t do_controller(uint8_t controller) { // read controller X speed & encode controller data packet uint16_t tmp = 0; uint8_t speed; uint8_t trackchange = 0xff; if ( (PIN(SW_PACECAR_PORT) & _BV(SW_PACECAR)) == 0 ) { // map controller 1+2 to 5+6 if (controller == 4) tmp = ((getADC(CONTROLLER1_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if (controller == 5) tmp = ((getADC(CONTROLLER2_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if (controller == 4) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER1_SW)); if (controller == 5) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER2_SW)); speed = tmp; } else { // read speeds if ((controller == 0) && (mode!=1)) tmp = ((getADC(CONTROLLER1_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if ((controller == 1) && (mode!=1)) tmp = ((getADC(CONTROLLER2_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if ((controller == 2) && (mode!=1)) tmp = ((getADC(CONTROLLER3_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if ((controller == 3) && (mode!=1)) tmp = ((getADC(CONTROLLER4_SPEED) / CONTROLLER_DIVISOR) & 0x0F); if (controller == 0) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER1_SW)); if (controller == 1) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER2_SW)); if (controller == 2) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER3_SW)); if (controller == 3) trackchange = (PIN(CONTROLLER_PORT) & _BV(CONTROLLER4_SW)); if (controller < 4) { if (tmp < slot[controller].speedminimum) tmp = slot[controller].speedminimum; if ((mode == 2) && (tmp != 0)) { jumpstart(controller); tmp = 0; } if (tmp > slot[controller].speedlimit) tmp = slot[controller].speedlimit; speed = tmp; tmp = tmp << 1; } else { if ((mode == 0) && (tmp < slot[controller].speedminimum)) tmp = slot[controller].speedminimum; if (tmp > slot[controller].speedlimit) tmp = slot[controller].speedlimit; speed = tmp; tmp = tmp << 1; if (trackchange || slot[controller].trackswitch) tmp |= (1<<5); } } switch (controller) { case 0: if (trackchange != 0) { tmp |= (1<<5); if (mode == 0) LED(1,0); } else if (mode == 0) LED(1,1); break; case 1: if (trackchange != 0) { tmp |= (1<<5); if (mode == 0) LED(2,0); } else if (mode == 0) LED(2,1); break; case 2: if (trackchange != 0) { tmp |= (1<<5); if (mode == 0) LED(4,0); } else if (mode == 0) LED(4,1); break; case 3: if (trackchange != 0) { tmp |= (1<<5); if (mode == 0) LED(5,0); } else if (mode == 0) LED(5,1); break; } tmp |= (0b1000000000 | (controller << 6)); // FUEL BIT GETS SET WHEN FUEL == 0, // THIS REQUIRES PHYSICAL CAR FUEL LEVEL SET TO ZERO BEFORE! if ( ((PIN(SW_FUEL_PORT) & _BV(SW_FUEL)) != 0) | (slot[controller].fuel == 0)) tmp |= 1; // benzinstand aktiv - tankmodusschalter if (insert_queue(tmp, 9)) { if (speed != 0) { // do the fuel calculation, regardless if fuel logic active or not tmp = (uint8_t)(((slot[controller].accel * speed) + 1) / FUEL_DIVISOR); if (tmp == 0) tmp = 1; if (slot[controller].fuel > 0) { // enough fuel left to decrement? if (slot[controller].fuel > tmp) { slot[controller].fuel -= tmp; // decrement fuel level } else slot[controller].fuel = 0; } } else if (slot[controller].canrefuel) { // increase fuel by 5%/sec, this equals by adding 50 to the counter slot[controller].fuel += 50; if (slot[controller].fuel > FUEL_FULL) slot[controller].fuel = FUEL_FULL; } return 1; } else return 0; } uint8_t mirror( uint8_t n ) { n = ((n >> 1) & 0x55) | ((n << 1) & 0xaa); n = ((n >> 2) & 0x33) | ((n << 2) & 0xcc); n = ((n >> 4) & 0x0f) | ((n << 4) & 0xf0); return n; } int do_program(uint8_t controller, uint8_t command, uint8_t parameter) { // send program data packet uint16_t tmp; parameter = mirror(parameter); controller = mirror(controller); command = mirror(command); tmp = 0b1000000000000 | (parameter << 4) | command | (controller >> 5); return insert_queue(tmp, 12); } int do_active(void) { // send controller active data packet uint16_t tmp = 0b10000000; if ( (PIN(SW_PACECAR_PORT) & _BV(SW_PACECAR)) == 0 ) { // map controller 1+2 to 5+6 if ((getADC(CONTROLLER1_SPEED) / CONTROLLER_DIVISOR) > 0) tmp |= 0b10000101; if ((getADC(CONTROLLER2_SPEED) / CONTROLLER_DIVISOR) > 0) tmp |= 0b10000011; } else { if ((slot[0].speedminimum != 0) || ((getADC(CONTROLLER1_SPEED) / CONTROLLER_DIVISOR) > 0)) tmp |= 0b11000001; if ((slot[1].speedminimum != 0) || ((getADC(CONTROLLER2_SPEED) / CONTROLLER_DIVISOR) > 0)) tmp |= 0b10100001; if ((slot[2].speedminimum != 0) || ((getADC(CONTROLLER3_SPEED) / CONTROLLER_DIVISOR) > 0)) tmp |= 0b10010001; if ((slot[3].speedminimum != 0) || ((getADC(CONTROLLER4_SPEED) / CONTROLLER_DIVISOR) > 0)) tmp |= 0b10001001; if (slot[4].speedminimum != 0) tmp |= 0b10000101; if (slot[5].speedminimum != 0) tmp |= 0b10000011; } // todo: wenn Daten enpfangen wurden hier eine Quittierung senden anstatt dem Active Word return insert_queue(tmp, 7); } int do_pace_ghost(void) { // send ghost and pacecar data packet // todo: at the moment, both disabled! uint16_t tmp = 0b1111100000; if ( (PIN(SW_FUEL_PORT) & _BV(SW_FUEL)) != 0) tmp |= 1; // benzinstand aktiv - tankmodusschalter // todo: PC, NH, TK, (KFR, FR) return insert_queue(tmp, 9); } #include "interrupts.c" void reset_vars(void) { uint8_t i; for (i=0; i<MAX_SLOTS; i++) { slot[i].speedlimit = 15; slot[i].speedminimum = 0; slot[i].trackswitch = 0; slot[i].fuel = FUEL_FULL; slot[i].jumpstart_time = 0; slot[i].laps = 0; slot[i].seccnt = 0; slot[i].accel = 15; // full acceleration per default - TODO slot[i].canrefuel = 1; // TODO: only set to 1 when on a pitlane } sysclk.value = 0; } void countdown_progress(void) { // decrement COUNTDOWN_LOOPS if (countdown_loops>0) { countdown_loops--; } else { countdown--; countdown_loops = COUNTDOWN_DELAY; } switch (countdown) { case 5: LED(1, 1); break; case 4: LED(2, 1); break; case 3: LED(3, 1); break; case 2: LED(4, 1); break; case 1: LED(5, 1); break; case 0: { // RACE START! sysclk.value = 0; LEDS_OFF(); LED(3, 1); mode = 3; } break; } } void check_cars(void) { u32 clk, diff; clk.value = sysclk.value; // freeze system clock time if (car0 != car0_state) { car0_state = car0; if (car0_state != 0) { diff.value = clk.value - slot[car0-1].lap_time_start.value; if ( diff.value > 3000 ) { // minimum 1.5 second for 1 lap! if (slot[car0-1].lap_time_start.value != 0) { slot[car0-1].lap_time.value = diff.value; slot[car0-1].laps++; RS232_putc('L'); RS232_putc(':'); RS232_putc('A'); RS232_putc(':'); itoa(slot[car0-1].laps, s, 16); RS232_puts(s); RS232_putc(':'); RS232_putc('0'+car0_state); RS232_putc(':'); ultoa(diff.value, s, 16); RS232_puts(s); RS232_putc('\n'); } slot[car0-1].lap_time_start.value = clk.value; } } } car0 = 0; if (car1 != car1_state) { car1_state = car1; if (car1_state != 0) { diff.value = clk.value - slot[car1-1].lap_time_start.value; if ( diff.value > 3000 ) { // minimum 1.5 second for 1 lap! if (slot[car1-1].lap_time_start.value != 0) { slot[car1-1].lap_time.value = diff.value; slot[car1-1].laps++; RS232_putc('L'); RS232_putc(':'); RS232_putc('B'); RS232_putc(':'); itoa(slot[car1-1].laps, s, 16); RS232_puts(s); RS232_putc(':'); RS232_putc('0'+car1_state); RS232_putc(':'); ultoa(diff.value, s, 16); RS232_puts(s); RS232_putc('\n'); } slot[car1-1].lap_time_start.value = clk.value; } } } car1 = 0; } void slot_liveinfo(uint8_t idx) { // increment packet counter, if == 10 output some live info if (slot[idx].seccnt == 10) { // output current fuel status RS232_putc('F'); RS232_putc(':'); RS232_putc(idx + '0'); RS232_putc(':'); itoa(slot[idx].fuel, s, 16); RS232_puts(s); RS232_putc('\n'); slot[idx].seccnt = 0; } else slot[idx].seccnt++; } int main(void) { uint8_t packet_index = 1; uint8_t btn_start = _BV(SW_START); uint8_t old_start = btn_start; init_hardware(); reset_vars(); LED(3, 1); // enable middle led == idle mode // switch on rails power RAIL_POWER_PORT |= _BV(RAIL_POWER); while (1) { // check for short circuit on the rails check_rails_shortcut(); check_cars(); if (response_len > 0) { itoa(response, s, 2); response_len = 0; RS232_puts("ANSWER RX: "); RS232_puts(s); RS232_putc('\n'); } // read in button presses btn_start = (PIN(SW_START_PORT) & _BV(SW_START)); if (old_start != btn_start) { // start button changed if (btn_start == 0) { // start button press active if (mode == 0) { mode = 1; // set wait for race start mode reset_vars(); LED(1, 1); LED(2, 1); LED(3, 1); LED(4, 1); LED(5, 1); RS232_puts_p(prepare); } else if (mode == 1) { // Initiate race countdown sysclk.value = 0; countdown = 5; countdown_loops = COUNTDOWN_DELAY; mode = 2; LED(1, 0); LED(2, 0); LED(3, 0); LED(4, 0); LED(5, 0); RS232_puts_p(countdownstart); } } old_start = btn_start; } if (mode==3) { // RACE START! // issue reset command to lap counter mode = 0; RS232_puts_p(racestart); program_command = 6; program_parameter = 9; program_id = 0; program_count = 1; LAP_COUNTER_PORT |= _BV(LAP_COUNTER); // TODO: beep long _delay_us(50); LAP_COUNTER_PORT &= ~_BV(LAP_COUNTER); } switch (packet_index) { case 1: if (program_count > 0) { // command in queue if (do_program(program_id, program_command, program_parameter)) { packet_index++; program_count--; } } else { // output idle command if (do_program(7, 19, 0)) packet_index++; // reset //if (do_program(7, 20, 15)) packet_index++; // reset / pitstop detect //if (insert_queue(0, 0)) packet_index++; // null command } if ( (packet_index>1) && (mode == 2) ) countdown_progress(); break; case 2: if (do_pace_ghost()) packet_index++; break; case 3: if (do_active()) packet_index++; break; case 4: if (do_controller(0)) { packet_index++; slot_liveinfo(0); } break; case 5: if (do_controller(4)) { packet_index++; slot_liveinfo(4); } break; case 6: if (do_controller(1)) { packet_index++; slot_liveinfo(1); } break; case 7: if (do_controller(5)) { packet_index++; slot_liveinfo(5); } break; case 8: if (do_controller(2)) { packet_index++; slot_liveinfo(2); } break; case 9: if (do_active()) packet_index++; break; case 10: if (do_controller(3)) { packet_index = 1; slot_liveinfo(3); } // last packet, so reset packet index break; } } // main loop end };