diff -r 000000000000 -r 9e9b2c78bd31 usbdrv/usbdrv.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/usbdrv/usbdrv.h Thu Feb 16 14:40:23 2017 +0100 @@ -0,0 +1,746 @@ +/* Name: usbdrv.h + * Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers + * Author: Christian Starkjohann + * Creation Date: 2004-12-29 + * Tabsize: 4 + * Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH + * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt) + */ + +#ifndef __usbdrv_h_included__ +#define __usbdrv_h_included__ +#include "usbconfig.h" +#include "usbportability.h" + +/* +Hardware Prerequisites: +======================= +USB lines D+ and D- MUST be wired to the same I/O port. We recommend that D+ +triggers the interrupt (best achieved by using INT0 for D+), but it is also +possible to trigger the interrupt from D-. If D- is used, interrupts are also +triggered by SOF packets. D- requires a pull-up of 1.5k to +3.5V (and the +device must be powered at 3.5V) to identify as low-speed USB device. A +pull-down or pull-up of 1M SHOULD be connected from D+ to +3.5V to prevent +interference when no USB master is connected. If you use Zener diodes to limit +the voltage on D+ and D-, you MUST use a pull-down resistor, not a pull-up. +We use D+ as interrupt source and not D- because it does not trigger on +keep-alive and RESET states. If you want to count keep-alive events with +USB_COUNT_SOF, you MUST use D- as an interrupt source. + +As a compile time option, the 1.5k pull-up resistor on D- can be made +switchable to allow the device to disconnect at will. See the definition of +usbDeviceConnect() and usbDeviceDisconnect() further down in this file. + +Please adapt the values in usbconfig.h according to your hardware! + +The device MUST be clocked at exactly 12 MHz, 15 MHz, 16 MHz or 20 MHz +or at 12.8 MHz resp. 16.5 MHz +/- 1%. See usbconfig-prototype.h for details. + + +Limitations: +============ +Robustness with respect to communication errors: +The driver assumes error-free communication. It DOES check for errors in +the PID, but does NOT check bit stuffing errors, SE0 in middle of a byte, +token CRC (5 bit) and data CRC (16 bit). CRC checks can not be performed due +to timing constraints: We must start sending a reply within 7 bit times. +Bit stuffing and misplaced SE0 would have to be checked in real-time, but CPU +performance does not permit that. The driver does not check Data0/Data1 +toggling, but application software can implement the check. + +Input characteristics: +Since no differential receiver circuit is used, electrical interference +robustness may suffer. The driver samples only one of the data lines with +an ordinary I/O pin's input characteristics. However, since this is only a +low speed USB implementation and the specification allows for 8 times the +bit rate over the same hardware, we should be on the safe side. Even the spec +requires detection of asymmetric states at high bit rate for SE0 detection. + +Number of endpoints: +The driver supports the following endpoints: + +- Endpoint 0, the default control endpoint. +- Any number of interrupt- or bulk-out endpoints. The data is sent to + usbFunctionWriteOut() and USB_CFG_IMPLEMENT_FN_WRITEOUT must be defined + to 1 to activate this feature. The endpoint number can be found in the + global variable 'usbRxToken'. +- One default interrupt- or bulk-in endpoint. This endpoint is used for + interrupt- or bulk-in transfers which are not handled by any other endpoint. + You must define USB_CFG_HAVE_INTRIN_ENDPOINT in order to activate this + feature and call usbSetInterrupt() to send interrupt/bulk data. +- One additional interrupt- or bulk-in endpoint. This was endpoint 3 in + previous versions of this driver but can now be configured to any endpoint + number. You must define USB_CFG_HAVE_INTRIN_ENDPOINT3 in order to activate + this feature and call usbSetInterrupt3() to send interrupt/bulk data. The + endpoint number can be set with USB_CFG_EP3_NUMBER. + +Please note that the USB standard forbids bulk endpoints for low speed devices! +Most operating systems allow them anyway, but the AVR will spend 90% of the CPU +time in the USB interrupt polling for bulk data. + +Maximum data payload: +Data payload of control in and out transfers may be up to 254 bytes. In order +to accept payload data of out transfers, you need to implement +'usbFunctionWrite()'. + +USB Suspend Mode supply current: +The USB standard limits power consumption to 500uA when the bus is in suspend +mode. This is not a problem for self-powered devices since they don't need +bus power anyway. Bus-powered devices can achieve this only by putting the +CPU in sleep mode. The driver does not implement suspend handling by itself. +However, the application may implement activity monitoring and wakeup from +sleep. The host sends regular SE0 states on the bus to keep it active. These +SE0 states can be detected by using D- as the interrupt source. Define +USB_COUNT_SOF to 1 and use the global variable usbSofCount to check for bus +activity. + +Operation without an USB master: +The driver behaves neutral without connection to an USB master if D- reads +as 1. To avoid spurious interrupts, we recommend a high impedance (e.g. 1M) +pull-down or pull-up resistor on D+ (interrupt). If Zener diodes are used, +use a pull-down. If D- becomes statically 0, the driver may block in the +interrupt routine. + +Interrupt latency: +The application must ensure that the USB interrupt is not disabled for more +than 25 cycles (this is for 12 MHz, faster clocks allow longer latency). +This implies that all interrupt routines must either have the "ISR_NOBLOCK" +attribute set (see "avr/interrupt.h") or be written in assembler with "sei" +as the first instruction. + +Maximum interrupt duration / CPU cycle consumption: +The driver handles all USB communication during the interrupt service +routine. The routine will not return before an entire USB message is received +and the reply is sent. This may be up to ca. 1200 cycles @ 12 MHz (= 100us) if +the host conforms to the standard. The driver will consume CPU cycles for all +USB messages, even if they address another (low-speed) device on the same bus. + +*/ + +/* ------------------------------------------------------------------------- */ +/* --------------------------- Module Interface ---------------------------- */ +/* ------------------------------------------------------------------------- */ + +#define USBDRV_VERSION 20121206 +/* This define uniquely identifies a driver version. It is a decimal number + * constructed from the driver's release date in the form YYYYMMDD. If the + * driver's behavior or interface changes, you can use this constant to + * distinguish versions. If it is not defined, the driver's release date is + * older than 2006-01-25. + */ + + +#ifndef USB_PUBLIC +#define USB_PUBLIC +#endif +/* USB_PUBLIC is used as declaration attribute for all functions exported by + * the USB driver. The default is no attribute (see above). You may define it + * to static either in usbconfig.h or from the command line if you include + * usbdrv.c instead of linking against it. Including the C module of the driver + * directly in your code saves a couple of bytes in flash memory. + */ + +#ifndef __ASSEMBLER__ +#ifndef uchar +#define uchar unsigned char +#endif +#ifndef schar +#define schar signed char +#endif +/* shortcuts for well defined 8 bit integer types */ + +#if USB_CFG_LONG_TRANSFERS /* if more than 254 bytes transfer size required */ +# define usbMsgLen_t unsigned +#else +# define usbMsgLen_t uchar +#endif +/* usbMsgLen_t is the data type used for transfer lengths. By default, it is + * defined to uchar, allowing a maximum of 254 bytes (255 is reserved for + * USB_NO_MSG below). If the usbconfig.h defines USB_CFG_LONG_TRANSFERS to 1, + * a 16 bit data type is used, allowing up to 16384 bytes (the rest is used + * for flags in the descriptor configuration). + */ +#define USB_NO_MSG ((usbMsgLen_t)-1) /* constant meaning "no message" */ + +#ifndef usbMsgPtr_t +#define usbMsgPtr_t uchar * +#endif +/* Making usbMsgPtr_t a define allows the user of this library to define it to + * an 8 bit type on tiny devices. This reduces code size, especially if the + * compiler supports a tiny memory model. + * The type can be a pointer or scalar type, casts are made where necessary. + * Although it's paradoxical, Gcc 4 generates slightly better code for scalar + * types than for pointers. + */ + +struct usbRequest; /* forward declaration */ + +USB_PUBLIC void usbInit(void); +/* This function must be called before interrupts are enabled and the main + * loop is entered. We exepct that the PORT and DDR bits for D+ and D- have + * not been changed from their default status (which is 0). If you have changed + * them, set both back to 0 (configure them as input with no internal pull-up). + */ +USB_PUBLIC void usbPoll(void); +/* This function must be called at regular intervals from the main loop. + * Maximum delay between calls is somewhat less than 50ms (USB timeout for + * accepting a Setup message). Otherwise the device will not be recognized. + * Please note that debug outputs through the UART take ~ 0.5ms per byte + * at 19200 bps. + */ +extern usbMsgPtr_t usbMsgPtr; +/* This variable may be used to pass transmit data to the driver from the + * implementation of usbFunctionWrite(). It is also used internally by the + * driver for standard control requests. + */ +USB_PUBLIC usbMsgLen_t usbFunctionSetup(uchar data[8]); +/* This function is called when the driver receives a SETUP transaction from + * the host which is not answered by the driver itself (in practice: class and + * vendor requests). All control transfers start with a SETUP transaction where + * the host communicates the parameters of the following (optional) data + * transfer. The SETUP data is available in the 'data' parameter which can + * (and should) be casted to 'usbRequest_t *' for a more user-friendly access + * to parameters. + * + * If the SETUP indicates a control-in transfer, you should provide the + * requested data to the driver. There are two ways to transfer this data: + * (1) Set the global pointer 'usbMsgPtr' to the base of the static RAM data + * block and return the length of the data in 'usbFunctionSetup()'. The driver + * will handle the rest. Or (2) return USB_NO_MSG in 'usbFunctionSetup()'. The + * driver will then call 'usbFunctionRead()' when data is needed. See the + * documentation for usbFunctionRead() for details. + * + * If the SETUP indicates a control-out transfer, the only way to receive the + * data from the host is through the 'usbFunctionWrite()' call. If you + * implement this function, you must return USB_NO_MSG in 'usbFunctionSetup()' + * to indicate that 'usbFunctionWrite()' should be used. See the documentation + * of this function for more information. If you just want to ignore the data + * sent by the host, return 0 in 'usbFunctionSetup()'. + * + * Note that calls to the functions usbFunctionRead() and usbFunctionWrite() + * are only done if enabled by the configuration in usbconfig.h. + */ +USB_PUBLIC usbMsgLen_t usbFunctionDescriptor(struct usbRequest *rq); +/* You need to implement this function ONLY if you provide USB descriptors at + * runtime (which is an expert feature). It is very similar to + * usbFunctionSetup() above, but it is called only to request USB descriptor + * data. See the documentation of usbFunctionSetup() above for more info. + */ +#if USB_CFG_HAVE_INTRIN_ENDPOINT +USB_PUBLIC void usbSetInterrupt(uchar *data, uchar len); +/* This function sets the message which will be sent during the next interrupt + * IN transfer. The message is copied to an internal buffer and must not exceed + * a length of 8 bytes. The message may be 0 bytes long just to indicate the + * interrupt status to the host. + * If you need to transfer more bytes, use a control read after the interrupt. + */ +#define usbInterruptIsReady() (usbTxLen1 & 0x10) +/* This macro indicates whether the last interrupt message has already been + * sent. If you set a new interrupt message before the old was sent, the + * message already buffered will be lost. + */ +#if USB_CFG_HAVE_INTRIN_ENDPOINT3 +USB_PUBLIC void usbSetInterrupt3(uchar *data, uchar len); +#define usbInterruptIsReady3() (usbTxLen3 & 0x10) +/* Same as above for endpoint 3 */ +#endif +#endif /* USB_CFG_HAVE_INTRIN_ENDPOINT */ +#if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH /* simplified interface for backward compatibility */ +#define usbHidReportDescriptor usbDescriptorHidReport +/* should be declared as: PROGMEM char usbHidReportDescriptor[]; */ +/* If you implement an HID device, you need to provide a report descriptor. + * The HID report descriptor syntax is a bit complex. If you understand how + * report descriptors are constructed, we recommend that you use the HID + * Descriptor Tool from usb.org, see http://www.usb.org/developers/hidpage/. + * Otherwise you should probably start with a working example. + */ +#endif /* USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH */ +#if USB_CFG_IMPLEMENT_FN_WRITE +USB_PUBLIC uchar usbFunctionWrite(uchar *data, uchar len); +/* This function is called by the driver to provide a control transfer's + * payload data (control-out). It is called in chunks of up to 8 bytes. The + * total count provided in the current control transfer can be obtained from + * the 'length' property in the setup data. If an error occurred during + * processing, return 0xff (== -1). The driver will answer the entire transfer + * with a STALL token in this case. If you have received the entire payload + * successfully, return 1. If you expect more data, return 0. If you don't + * know whether the host will send more data (you should know, the total is + * provided in the usbFunctionSetup() call!), return 1. + * NOTE: If you return 0xff for STALL, 'usbFunctionWrite()' may still be called + * for the remaining data. You must continue to return 0xff for STALL in these + * calls. + * In order to get usbFunctionWrite() called, define USB_CFG_IMPLEMENT_FN_WRITE + * to 1 in usbconfig.h and return 0xff in usbFunctionSetup().. + */ +#endif /* USB_CFG_IMPLEMENT_FN_WRITE */ +#if USB_CFG_IMPLEMENT_FN_READ +USB_PUBLIC uchar usbFunctionRead(uchar *data, uchar len); +/* This function is called by the driver to ask the application for a control + * transfer's payload data (control-in). It is called in chunks of up to 8 + * bytes each. You should copy the data to the location given by 'data' and + * return the actual number of bytes copied. If you return less than requested, + * the control-in transfer is terminated. If you return 0xff, the driver aborts + * the transfer with a STALL token. + * In order to get usbFunctionRead() called, define USB_CFG_IMPLEMENT_FN_READ + * to 1 in usbconfig.h and return 0xff in usbFunctionSetup().. + */ +#endif /* USB_CFG_IMPLEMENT_FN_READ */ + +extern uchar usbRxToken; /* may be used in usbFunctionWriteOut() below */ +#if USB_CFG_IMPLEMENT_FN_WRITEOUT +USB_PUBLIC void usbFunctionWriteOut(uchar *data, uchar len); +/* This function is called by the driver when data is received on an interrupt- + * or bulk-out endpoint. The endpoint number can be found in the global + * variable usbRxToken. You must define USB_CFG_IMPLEMENT_FN_WRITEOUT to 1 in + * usbconfig.h to get this function called. + */ +#endif /* USB_CFG_IMPLEMENT_FN_WRITEOUT */ +#ifdef USB_CFG_PULLUP_IOPORTNAME +#define usbDeviceConnect() ((USB_PULLUP_DDR |= (1<device, 1=device->host + * t ..... type: 0=standard, 1=class, 2=vendor, 3=reserved + * r ..... recipient: 0=device, 1=interface, 2=endpoint, 3=other + */ + +/* USB setup recipient values */ +#define USBRQ_RCPT_MASK 0x1f +#define USBRQ_RCPT_DEVICE 0 +#define USBRQ_RCPT_INTERFACE 1 +#define USBRQ_RCPT_ENDPOINT 2 + +/* USB request type values */ +#define USBRQ_TYPE_MASK 0x60 +#define USBRQ_TYPE_STANDARD (0<<5) +#define USBRQ_TYPE_CLASS (1<<5) +#define USBRQ_TYPE_VENDOR (2<<5) + +/* USB direction values: */ +#define USBRQ_DIR_MASK 0x80 +#define USBRQ_DIR_HOST_TO_DEVICE (0<<7) +#define USBRQ_DIR_DEVICE_TO_HOST (1<<7) + +/* USB Standard Requests */ +#define USBRQ_GET_STATUS 0 +#define USBRQ_CLEAR_FEATURE 1 +#define USBRQ_SET_FEATURE 3 +#define USBRQ_SET_ADDRESS 5 +#define USBRQ_GET_DESCRIPTOR 6 +#define USBRQ_SET_DESCRIPTOR 7 +#define USBRQ_GET_CONFIGURATION 8 +#define USBRQ_SET_CONFIGURATION 9 +#define USBRQ_GET_INTERFACE 10 +#define USBRQ_SET_INTERFACE 11 +#define USBRQ_SYNCH_FRAME 12 + +/* USB descriptor constants */ +#define USBDESCR_DEVICE 1 +#define USBDESCR_CONFIG 2 +#define USBDESCR_STRING 3 +#define USBDESCR_INTERFACE 4 +#define USBDESCR_ENDPOINT 5 +#define USBDESCR_HID 0x21 +#define USBDESCR_HID_REPORT 0x22 +#define USBDESCR_HID_PHYS 0x23 + +//#define USBATTR_BUSPOWER 0x80 // USB 1.1 does not define this value any more +#define USBATTR_BUSPOWER 0 +#define USBATTR_SELFPOWER 0x40 +#define USBATTR_REMOTEWAKE 0x20 + +/* USB HID Requests */ +#define USBRQ_HID_GET_REPORT 0x01 +#define USBRQ_HID_GET_IDLE 0x02 +#define USBRQ_HID_GET_PROTOCOL 0x03 +#define USBRQ_HID_SET_REPORT 0x09 +#define USBRQ_HID_SET_IDLE 0x0a +#define USBRQ_HID_SET_PROTOCOL 0x0b + +/* ------------------------------------------------------------------------- */ + +#endif /* __usbdrv_h_included__ */