Wed, 12 Sep 2018 12:48:28 +0200
initial commit of FluidSwitch prototype
// Naca4.scad - library for parametric airfoils of 4 digit NACA series // Code: Rudolf Huttary, Berlin // June 2015 // commercial use prohibited // general use: for more examples refer to sampler.scad // naca = naca digits or 3el vector (default = 12 or [0, 0, .12]) // L = chord length [mm] (default= 100) // N = # sample points (default= 81) // h = height [mm] (default= 1) // open = close at the thin end? (default = true) // two equivalent example calls airfoil(naca = 2408, L = 60, N=1001, h = 30, open = false); // airfoil(naca = [.2, .4, .32], L = 60, N=1001, h = 30, open = false); module help() { echo(str("\n\nList of signatures in lib:\n=================\n", "module airfoil(naca=2412, L = 100, N = 81, h = 1, open = false) - renders airfoil object\n", "module airfoil(naca=[.2, .4, .12], L = 100, N = 81, h = 1, open = false) - renders airfoil object using percentage for camber, camber distance and thicknes\n", "function airfoil_data(naca=12, L = 100, N = 81, open = false)\n", "=================\n")); } help(); // this is the object module airfoil(naca=12, L = 100, N = 81, h = 1, open = false) { linear_extrude(height = h) polygon(points = airfoil_data(naca, L, N, open)); } // this is the main function providing the airfoil data function airfoil_data(naca=12, L = 100, N = 81, open = false) = let(Na = len(naca)!=3?NACA(naca):naca) let(A = [.2969, -0.126, -.3516, .2843, open?-0.1015:-0.1036]) [for (b=[-180:360/(N):179.99]) let (x = (1-cos(b))/2) let(yt = sign(b)*Na[2]/.2*(A*[sqrt(x), x, x*x, x*x*x, x*x*x*x])) Na[0]==0?L*[x, yt]:L*camber(x, yt, Na[0], Na[1], sign(b))]; // helper functions function NACA(naca) = let (M = floor(naca/1000)) let (P = floor((naca-M*1000)/100)) [M/100, P/10, floor(naca-M*1000-P*100)/100]; function camber(x, y, M, P, upper) = let(yc = (x<P)?M/P/P*(2*P*x-x*x): M/(1-P)/(1-P)*(1 - 2*P + 2*P*x -x*x)) let(dy = (x<P)?2*M/P/P*(P-x):2*M/(1-P)/(1-P)*(P-x)) let(th = atan(dy)) [upper ? x - y*sin(th):x + y*sin(th), upper ? yc + y*cos(th):yc - y*cos(th)];