diff -r 000000000000 -r 2c8ba1964db7 stepper.cpp
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/stepper.cpp Sat Nov 07 13:23:07 2015 +0100
@@ -0,0 +1,872 @@
+/*
+ stepper.c - stepper motor driver: executes motion plans using stepper motors
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see .
+*/
+
+/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
+ and Philipp Tiefenbacher. */
+
+#include "Marlin.h"
+#include "stepper.h"
+#include "planner.h"
+#include "temperature.h"
+#include "ultralcd.h"
+#include "language.h"
+#include "led.h"
+#include "speed_lookuptable.h"
+
+
+
+//===========================================================================
+//=============================public variables ============================
+//===========================================================================
+block_t *current_block; // A pointer to the block currently being traced
+volatile bool endstop_z_hit=false;
+bool old_z_min_endstop=false;
+
+
+//===========================================================================
+//=============================private variables ============================
+//===========================================================================
+//static makes it inpossible to be called from outside of this file by extern.!
+
+// Variables used by The Stepper Driver Interrupt
+static unsigned char out_bits; // The next stepping-bits to be output
+static long counter_x, // Counter variables for the bresenham line tracer
+ counter_y,
+ counter_z,
+ counter_e;
+volatile static unsigned long step_events_completed; // The number of step events executed in the current block
+#ifdef ADVANCE
+ static long advance_rate, advance, final_advance = 0;
+ static long old_advance = 0;
+#endif
+static long e_steps[3];
+static long acceleration_time, deceleration_time;
+//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
+static unsigned short acc_step_rate; // needed for deccelaration start point
+static char step_loops;
+static unsigned short OCR1A_nominal;
+
+volatile long endstops_trigsteps[3]={0,0,0};
+volatile long endstops_stepsTotal,endstops_stepsDone;
+static volatile bool endstop_x_hit=false;
+static volatile bool endstop_y_hit=false;
+
+static bool old_x_min_endstop=false;
+static bool old_x_max_endstop=false;
+static bool old_y_min_endstop=false;
+static bool old_y_max_endstop=false;
+static bool old_z_max_endstop=false;
+
+static bool check_endstops = true;
+
+volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
+volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
+
+//===========================================================================
+//=============================functions ============================
+//===========================================================================
+
+#define CHECK_ENDSTOPS if(check_endstops)
+
+// intRes = intIn1 * intIn2 >> 16
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 24 bit result
+#define MultiU16X8toH16(intRes, charIn1, intIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %A1, %A2 \n\t" \
+"add %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r0 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (charIn1), \
+"d" (intIn2) \
+: \
+"r26" \
+)
+
+// intRes = longIn1 * longIn2 >> 24
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 48bit result
+#define MultiU24X24toH16(intRes, longIn1, longIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"mov r27, r1 \n\t" \
+"mul %B1, %C2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %C1, %C2 \n\t" \
+"add %B0, r0 \n\t" \
+"mul %C1, %B2 \n\t" \
+"add %A0, r0 \n\t" \
+"adc %B0, r1 \n\t" \
+"mul %A1, %C2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %B2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %C1, %A2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %A2 \n\t" \
+"add r27, r1 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r27 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (longIn1), \
+"d" (longIn2) \
+: \
+"r26" , "r27" \
+)
+
+// Some useful constants
+
+#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<
+//
+// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
+// first block->accelerate_until step_events_completed, then keeps going at constant speed until
+// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
+// The slope of acceleration is calculated with the leib ramp alghorithm.
+
+void st_wake_up() {
+ // TCNT1 = 0;
+ ENABLE_STEPPER_DRIVER_INTERRUPT();
+}
+
+FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
+ unsigned short timer;
+ if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
+
+ if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
+ step_rate = (step_rate >> 2)&0x3fff;
+ step_loops = 4;
+ }
+ else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
+ step_rate = (step_rate >> 1)&0x7fff;
+ step_loops = 2;
+ }
+ else {
+ step_loops = 1;
+ }
+
+ if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
+ step_rate -= (F_CPU/500000); // Correct for minimal speed
+ if(step_rate >= (8*256)){ // higher step rate
+ unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
+ unsigned char tmp_step_rate = (step_rate & 0x00ff);
+ unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
+ MultiU16X8toH16(timer, tmp_step_rate, gain);
+ timer = (unsigned short)pgm_read_word_near(table_address) - timer;
+ }
+ else { // lower step rates
+ unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
+ table_address += ((step_rate)>>1) & 0xfffc;
+ timer = (unsigned short)pgm_read_word_near(table_address);
+ timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
+ }
+ if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
+ return timer;
+}
+
+// Initializes the trapezoid generator from the current block. Called whenever a new
+// block begins.
+FORCE_INLINE void trapezoid_generator_reset() {
+ #ifdef ADVANCE
+ advance = current_block->initial_advance;
+ final_advance = current_block->final_advance;
+ // Do E steps + advance steps
+ e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
+ old_advance = advance >>8;
+ #endif
+ deceleration_time = 0;
+ // step_rate to timer interval
+ acc_step_rate = current_block->initial_rate;
+ acceleration_time = calc_timer(acc_step_rate);
+ OCR1A = acceleration_time;
+ OCR1A_nominal = calc_timer(current_block->nominal_rate);
+
+
+
+// SERIAL_ECHO_START;
+// SERIAL_ECHOPGM("advance :");
+// SERIAL_ECHO(current_block->advance/256.0);
+// SERIAL_ECHOPGM("advance rate :");
+// SERIAL_ECHO(current_block->advance_rate/256.0);
+// SERIAL_ECHOPGM("initial advance :");
+// SERIAL_ECHO(current_block->initial_advance/256.0);
+// SERIAL_ECHOPGM("final advance :");
+// SERIAL_ECHOLN(current_block->final_advance/256.0);
+
+}
+
+// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
+// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
+ISR(TIMER1_COMPA_vect)
+{
+ // If there is no current block, attempt to pop one from the buffer
+ if (current_block == NULL) {
+ // Anything in the buffer?
+ current_block = plan_get_current_block();
+ if (current_block != NULL) {
+ current_block->busy = true;
+ trapezoid_generator_reset();
+ counter_x = -(current_block->step_event_count >> 1);
+ counter_y = counter_x;
+ counter_z = counter_x;
+ counter_e = counter_x;
+ step_events_completed = 0;
+
+ #ifdef Z_LATE_ENABLE
+ if(current_block->steps_z > 0) {
+ enable_z();
+ OCR1A = 2000; //1ms wait
+ return;
+ }
+ #endif
+
+// #ifdef ADVANCE
+// e_steps[current_block->active_extruder] = 0;
+// #endif
+ }
+ else {
+ OCR1A=2000; // 1kHz.
+ }
+ }
+
+ if (current_block != NULL) {
+ // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
+ out_bits = current_block->direction_bits;
+
+ // Set direction en check limit switches
+ if ((out_bits & (1< -1
+ bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
+ if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
+ endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
+ endstop_x_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_x_min_endstop = x_min_endstop;
+ #endif
+ }
+ }
+ else { // +direction
+ WRITE(X_DIR_PIN,!INVERT_X_DIR);
+ count_direction[X_AXIS]=1;
+ CHECK_ENDSTOPS
+ {
+ #if X_MAX_PIN > -1
+ bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
+ if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
+ endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
+ endstop_x_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_x_max_endstop = x_max_endstop;
+ #endif
+ }
+ }
+
+ if ((out_bits & (1< -1
+ bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
+ if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
+ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
+ endstop_y_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_y_min_endstop = y_min_endstop;
+ #endif
+ }
+ }
+ else { // +direction
+ WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
+ count_direction[Y_AXIS]=1;
+ CHECK_ENDSTOPS
+ {
+ #if Y_MAX_PIN > -1
+ bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
+ if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
+ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
+ endstop_y_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_y_max_endstop = y_max_endstop;
+ #endif
+ }
+ }
+
+ if ((out_bits & (1< -1
+ bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
+ if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
+ endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
+ endstop_z_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_z_min_endstop = z_min_endstop;
+ #endif
+ }
+ }
+ else { // +direction
+ WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
+ count_direction[Z_AXIS]=1;
+ CHECK_ENDSTOPS
+ {
+ #if Z_MAX_PIN > -1
+ bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
+ if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
+ endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
+ endstop_z_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_z_max_endstop = z_max_endstop;
+ #endif
+ }
+ }
+
+ #ifndef ADVANCE
+ if ((out_bits & (1<steps_e;
+ if (counter_e > 0) {
+ counter_e -= current_block->step_event_count;
+ if ((out_bits & (1<active_extruder]--;
+ }
+ else {
+ e_steps[current_block->active_extruder]++;
+ }
+ }
+ #endif //ADVANCE
+
+ counter_x += current_block->steps_x;
+ if (counter_x > 0) {
+ WRITE(X_STEP_PIN, HIGH);
+ counter_x -= current_block->step_event_count;
+ WRITE(X_STEP_PIN, LOW);
+ count_position[X_AXIS]+=count_direction[X_AXIS];
+ }
+
+ counter_y += current_block->steps_y;
+ if (counter_y > 0) {
+ WRITE(Y_STEP_PIN, HIGH);
+ counter_y -= current_block->step_event_count;
+ WRITE(Y_STEP_PIN, LOW);
+ count_position[Y_AXIS]+=count_direction[Y_AXIS];
+ }
+
+ counter_z += current_block->steps_z;
+ if (counter_z > 0) {
+ WRITE(Z_STEP_PIN, HIGH);
+ counter_z -= current_block->step_event_count;
+ WRITE(Z_STEP_PIN, LOW);
+ count_position[Z_AXIS]+=count_direction[Z_AXIS];
+ }
+
+ #ifndef ADVANCE
+ counter_e += current_block->steps_e;
+ if (counter_e > 0) {
+ // M571 enable, since extruder motor active
+ if (m571_enabled) WRITE(M571_PIN, HIGH);
+ // N571 disables real E drive! (ie. on laser operations)
+ if (!n571_enabled) {
+ WRITE_E_STEP(HIGH);
+ counter_e -= current_block->step_event_count;
+ WRITE_E_STEP(LOW);
+ } else counter_e -= current_block->step_event_count;
+ count_position[E_AXIS]+=count_direction[E_AXIS];
+ } else {
+ // M571 disable, no more E_steps to do
+ if (m571_enabled) WRITE(M571_PIN, LOW);
+
+ }
+ #endif //!ADVANCE
+ step_events_completed += 1;
+ if(step_events_completed >= current_block->step_event_count) break;
+ }
+ // Calculare new timer value
+ unsigned short timer;
+ unsigned short step_rate;
+ if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
+
+ MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
+ acc_step_rate += current_block->initial_rate;
+
+ // upper limit
+ if(acc_step_rate > current_block->nominal_rate)
+ acc_step_rate = current_block->nominal_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(acc_step_rate);
+ OCR1A = timer;
+ acceleration_time += timer;
+ #ifdef ADVANCE
+ for(int8_t i=0; i < step_loops; i++) {
+ advance += advance_rate;
+ }
+ //if(advance > current_block->advance) advance = current_block->advance;
+ // Do E steps + advance steps
+ e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
+ old_advance = advance >>8;
+
+ #endif
+ }
+ else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
+ MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
+
+ if(step_rate > acc_step_rate) { // Check step_rate stays positive
+ step_rate = current_block->final_rate;
+ }
+ else {
+ step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
+ }
+
+ // lower limit
+ if(step_rate < current_block->final_rate)
+ step_rate = current_block->final_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(step_rate);
+ OCR1A = timer;
+ deceleration_time += timer;
+ #ifdef ADVANCE
+ for(int8_t i=0; i < step_loops; i++) {
+ advance -= advance_rate;
+ }
+ if(advance < final_advance) advance = final_advance;
+ // Do E steps + advance steps
+ e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
+ old_advance = advance >>8;
+ #endif //ADVANCE
+ }
+ else {
+ OCR1A = OCR1A_nominal;
+ }
+
+ // If current block is finished, reset pointer
+ if (step_events_completed >= current_block->step_event_count) {
+ current_block = NULL;
+ plan_discard_current_block();
+ }
+ }
+}
+
+#ifdef ADVANCE
+ unsigned char old_OCR0A;
+ // Timer interrupt for E. e_steps is set in the main routine;
+ // Timer 0 is shared with millies
+ ISR(TIMER0_COMPA_vect)
+ {
+ old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
+ OCR0A = old_OCR0A;
+ // Set E direction (Depends on E direction + advance)
+ for(unsigned char i=0; i<4;i++) {
+ if (e_steps[0] != 0) {
+ WRITE(E0_STEP_PIN, LOW);
+ if (e_steps[0] < 0) {
+ WRITE(E0_DIR_PIN, INVERT_E0_DIR);
+ e_steps[0]++;
+ WRITE(E0_STEP_PIN, HIGH);
+ }
+ else if (e_steps[0] > 0) {
+ WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
+ e_steps[0]--;
+ WRITE(E0_STEP_PIN, HIGH);
+ }
+ }
+ #if EXTRUDERS > 1
+ if (e_steps[1] != 0) {
+ WRITE(E1_STEP_PIN, LOW);
+ if (e_steps[1] < 0) {
+ WRITE(E1_DIR_PIN, INVERT_E1_DIR);
+ e_steps[1]++;
+ WRITE(E1_STEP_PIN, HIGH);
+ }
+ else if (e_steps[1] > 0) {
+ WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
+ e_steps[1]--;
+ WRITE(E1_STEP_PIN, HIGH);
+ }
+ }
+ #endif
+ #if EXTRUDERS > 2
+ if (e_steps[2] != 0) {
+ WRITE(E2_STEP_PIN, LOW);
+ if (e_steps[2] < 0) {
+ WRITE(E2_DIR_PIN, INVERT_E2_DIR);
+ e_steps[2]++;
+ WRITE(E2_STEP_PIN, HIGH);
+ }
+ else if (e_steps[2] > 0) {
+ WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
+ e_steps[2]--;
+ WRITE(E2_STEP_PIN, HIGH);
+ }
+ }
+ #endif
+ }
+ }
+#endif // ADVANCE
+
+void st_init()
+{
+ //Initialize Dir Pins
+ #if X_DIR_PIN > -1
+ SET_OUTPUT(X_DIR_PIN);
+ #endif
+ #if Y_DIR_PIN > -1
+ SET_OUTPUT(Y_DIR_PIN);
+ #endif
+ #if Z_DIR_PIN > -1
+ SET_OUTPUT(Z_DIR_PIN);
+ #endif
+ #if E0_DIR_PIN > -1
+ SET_OUTPUT(E0_DIR_PIN);
+ #endif
+ #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
+ SET_OUTPUT(E1_DIR_PIN);
+ #endif
+ #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
+ SET_OUTPUT(E2_DIR_PIN);
+ #endif
+
+ //Initialize Enable Pins - steppers default to disabled.
+
+ #if (X_ENABLE_PIN > -1)
+ SET_OUTPUT(X_ENABLE_PIN);
+ if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
+ #endif
+ #if (Y_ENABLE_PIN > -1)
+ SET_OUTPUT(Y_ENABLE_PIN);
+ if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
+ #endif
+ #if (Z_ENABLE_PIN > -1)
+ SET_OUTPUT(Z_ENABLE_PIN);
+ if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
+ #endif
+ #if (E0_ENABLE_PIN > -1)
+ SET_OUTPUT(E0_ENABLE_PIN);
+ if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
+ #endif
+ #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
+ SET_OUTPUT(E1_ENABLE_PIN);
+ if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
+ #endif
+ #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
+ SET_OUTPUT(E2_ENABLE_PIN);
+ if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
+ #endif
+
+ //endstops and pullups
+ #ifdef ENDSTOPPULLUPS
+ #if X_MIN_PIN > -1
+ SET_INPUT(X_MIN_PIN);
+ WRITE(X_MIN_PIN,HIGH);
+ #endif
+ #if X_MAX_PIN > -1
+ SET_INPUT(X_MAX_PIN);
+ WRITE(X_MAX_PIN,HIGH);
+ #endif
+ #if Y_MIN_PIN > -1
+ SET_INPUT(Y_MIN_PIN);
+ WRITE(Y_MIN_PIN,HIGH);
+ #endif
+ #if Y_MAX_PIN > -1
+ SET_INPUT(Y_MAX_PIN);
+ WRITE(Y_MAX_PIN,HIGH);
+ #endif
+ #if Z_MIN_PIN > -1
+ SET_INPUT(Z_MIN_PIN);
+ WRITE(Z_MIN_PIN,HIGH);
+ #endif
+ #if Z_MAX_PIN > -1
+ SET_INPUT(Z_MAX_PIN);
+ WRITE(Z_MAX_PIN,HIGH);
+ #endif
+ #else //ENDSTOPPULLUPS
+ #if X_MIN_PIN > -1
+ SET_INPUT(X_MIN_PIN);
+ #endif
+ #if X_MAX_PIN > -1
+ SET_INPUT(X_MAX_PIN);
+ #endif
+ #if Y_MIN_PIN > -1
+ SET_INPUT(Y_MIN_PIN);
+ #endif
+ #if Y_MAX_PIN > -1
+ SET_INPUT(Y_MAX_PIN);
+ #endif
+ #if Z_MIN_PIN > -1
+ SET_INPUT(Z_MIN_PIN);
+ #endif
+ #if Z_MAX_PIN > -1
+ SET_INPUT(Z_MAX_PIN);
+ #endif
+ #endif //ENDSTOPPULLUPS
+
+
+ //Initialize Step Pins
+ #if (X_STEP_PIN > -1)
+ SET_OUTPUT(X_STEP_PIN);
+ #if X_ENABLE_PIN > -1
+ if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
+ #endif
+ #endif
+ #if (Y_STEP_PIN > -1)
+ SET_OUTPUT(Y_STEP_PIN);
+ #if Y_ENABLE_PIN > -1
+ if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
+ #endif
+ #endif
+ #if (Z_STEP_PIN > -1)
+ SET_OUTPUT(Z_STEP_PIN);
+ #if Z_ENABLE_PIN > -1
+ if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
+ #endif
+ #endif
+ #if (E0_STEP_PIN > -1)
+ SET_OUTPUT(E0_STEP_PIN);
+ #if E0_ENABLE_PIN > -1
+ if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
+ #endif
+ #endif
+ #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
+ SET_OUTPUT(E1_STEP_PIN);
+ #if E1_ENABLE_PIN > -1
+ if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
+ #endif
+ #endif
+ #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
+ SET_OUTPUT(E2_STEP_PIN);
+ #if E2_ENABLE_PIN > -1
+ if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
+ #endif
+ #endif
+
+ #ifdef CONTROLLERFAN_PIN
+ SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
+ #endif
+
+ // M571 disable, switch off default
+ if (m571_enabled) WRITE(M571_PIN, LOW);
+
+
+ // waveform generation = 0100 = CTC
+ TCCR1B &= ~(1<