Sat, 07 Nov 2015 13:24:46 +0100
several modifications to support laser enable - still needs cleanup
/* temperature.c - temperature control Part of Marlin Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* This firmware is a mashup between Sprinter and grbl. (https://github.com/kliment/Sprinter) (https://github.com/simen/grbl/tree) It has preliminary support for Matthew Roberts advance algorithm http://reprap.org/pipermail/reprap-dev/2011-May/003323.html */ #include "Marlin.h" #include "ultralcd.h" #include "temperature.h" //=========================================================================== //=============================public variables============================ //=========================================================================== int target_raw[EXTRUDERS_T] = { 0 }; int target_raw_bed = 0; int current_raw[EXTRUDERS_T] = { 0 }; int current_raw_bed = 0; int b_beta = BED_BETA; int b_resistor = BED_RS; long b_thermistor = BED_NTC; float b_inf = BED_R_INF; int n_beta = E_BETA; int n_resistor = E_RS; long n_thermistor = E_NTC; float n_inf = E_R_INF; #ifdef PIDTEMP // used external float pid_setpoint[EXTRUDERS_T] = { 0.0 }; float Kp=DEFAULT_Kp; float Ki=DEFAULT_Ki; int Ki_Max=PID_INTEGRAL_DRIVE_MAX; float Kd=DEFAULT_Kd; #endif //PIDTEMP //=========================================================================== //=============================private variables============================ //=========================================================================== static volatile bool temp_meas_ready = false; static unsigned long previous_millis_bed_heater; //static unsigned long previous_millis_heater; #ifdef PIDTEMP //static cannot be external: static float temp_iState[EXTRUDERS_T] = { 0 }; static float temp_dState[EXTRUDERS_T] = { 0 }; static float pTerm[EXTRUDERS_T]; static float iTerm[EXTRUDERS_T]; static float dTerm[EXTRUDERS_T]; //int output; static float pid_error[EXTRUDERS_T]; static float temp_iState_min[EXTRUDERS_T]; static float temp_iState_max[EXTRUDERS_T]; // static float pid_input[EXTRUDERS_T]; // static float pid_output[EXTRUDERS_T]; static bool pid_reset[EXTRUDERS_T]; #endif //PIDTEMP static unsigned char soft_pwm[EXTRUDERS_T]; // Init min and max temp with extreme values to prevent false errors during startup // static int minttemp[EXTRUDERS_T] = { 0 }; // static int maxttemp[EXTRUDERS_T] = { 16383 }; // the first value used for all static int bed_minttemp = 0; static int bed_maxttemp = 16383; //=========================================================================== //============================= functions ============================ //=========================================================================== void PID_autotune(float temp) { float input; int cycles=0; bool heating = true; unsigned long temp_millis = millis(); unsigned long t1=temp_millis; unsigned long t2=temp_millis; long t_high; long t_low; long bias=PID_MAX/2; long d = PID_MAX/2; float Ku, Tu; float Kp, Ki, Kd; float max, min; SERIAL_ECHOLN("PID Autotune start"); disable_heater(); // switch off all heaters. soft_pwm[0] = PID_MAX/2; for(;;) { if(temp_meas_ready == true) { // temp sample ready CRITICAL_SECTION_START; temp_meas_ready = false; CRITICAL_SECTION_END; input = analog2temp(current_raw[0], 0); max=max(max,input); min=min(min,input); if(heating == true && input > temp) { if(millis() - t2 > 5000) { heating=false; soft_pwm[0] = (bias - d) >> 1; t1=millis(); t_high=t1 - t2; max=temp; } } if(heating == false && input < temp) { if(millis() - t1 > 5000) { heating=true; t2=millis(); t_low=t2 - t1; if(cycles > 0) { bias += (d*(t_high - t_low))/(t_low + t_high); bias = constrain(bias, 20 ,PID_MAX-FULL_PID_BAND); if(bias > PID_MAX/2) d = PID_MAX - 1 - bias; else d = bias; SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias); SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d); SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min); SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max); if(cycles > 2) { Ku = (4.0*d)/(3.14159*(max-min)/2.0); Tu = ((float)(t_low + t_high)/1000.0); SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku); SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu); Kp = 0.6*Ku; Ki = 2*Kp/Tu; Kd = Kp*Tu/8; SERIAL_PROTOCOLLNPGM(" Clasic PID ") SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); } } soft_pwm[0] = (bias + d) >> 1; cycles++; min=temp; } } } if(input > (temp + 20)) { SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature to high"); return; } if(millis() - temp_millis > 2000) { temp_millis = millis(); SERIAL_PROTOCOLPGM("ok T:"); SERIAL_PROTOCOL(degHotend(0)); SERIAL_PROTOCOLPGM(" @:"); SERIAL_PROTOCOLLN(getHeaterPower(0)); } if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) { SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout"); return; } if(cycles > 5) { SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h"); return; } LCD_STATUS; } } void updatePID() { #ifdef PIDTEMP for(int e = 0; e < EXTRUDERS_T; e++) { temp_iState_max[e] = Ki_Max / Ki; } #endif } int getHeaterPower(int heater) { return soft_pwm[heater]; } void manage_heater() { float pid_input; float pid_output; if(temp_meas_ready != true) //better readability return; CRITICAL_SECTION_START; temp_meas_ready = false; CRITICAL_SECTION_END; for(int e = 0; e < EXTRUDERS_T; e++) { #ifdef PIDTEMP pid_input = analog2temp(current_raw[e], e); pid_error[e] = pid_setpoint[e] - pid_input; if(pid_error[e] > FULL_PID_BAND) { pid_output = PID_MAX; pid_reset[e] = true; } else if(pid_error[e] < -FULL_PID_BAND) { pid_output = 0; pid_reset[e] = true; } else { if(pid_reset[e] == true) { temp_iState[e] = 0.0; pid_reset[e] = false; } pTerm[e] = Kp * pid_error[e]; temp_iState[e] += pid_error[e]; temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); iTerm[e] = Ki * temp_iState[e]; //K1 defined in Configuration.h in the PID settings #define K2 (1.0-K1) dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]); temp_dState[e] = pid_input; pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX); } #ifdef PID_DEBUG SERIAL_ECHOLN(" PIDDEBUG "<<e<<": Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm[e]<<" iTerm "<<iTerm[e]<<" dTerm "<<dTerm[e]); #endif //PID_DEBUG #else /* PID off */ pid_output = 0; if(current_raw[e] < target_raw[e]) { pid_output = PID_MAX; } #endif // Check if temperature is within the correct range if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e])) { soft_pwm[e] = (int)pid_output >> 1; } else { soft_pwm[e] = 0; } } // End extruder for loop if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) return; previous_millis_bed_heater = millis(); #if TEMP_BED_PIN > -1 // Check if temperature is within the correct range if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) { if(current_raw_bed >= target_raw_bed) { WRITE(HEATER_BED_PIN,LOW); } else { WRITE(HEATER_BED_PIN,HIGH); } } else { WRITE(HEATER_BED_PIN,LOW); } #endif } // Use algebra to work out temperatures, not tables // NB - this assumes all extruders use the same thermistor type. int temp2analogi(int celsius, const float& beta, const float& rs, const float& r_inf) { float r = r_inf*exp(beta/(celsius - ABS_ZERO)); return AD_RANGE - (int)(0.5 + AD_RANGE*r/(r + rs)); } float analog2tempi(int raw, const float& beta, const float& rs, const float& r_inf) { float rawf = (float)(AD_RANGE - raw); return ABS_ZERO + beta/log( (rawf*rs/(AD_RANGE - rawf))/r_inf ); } #ifdef REPRAPPRO_MULTIMATERIALS float analog2temp_remote(uint8_t e) { return slaveDegHotend(e); } int temp2analog_remote(int celsius, uint8_t e) { // What do we do about this, then? return temp2analogi(celsius, n_beta, n_resistor, n_inf); } #endif int temp2analog(int celsius, uint8_t e) { #ifdef REPRAPPRO_MULTIMATERIALS if(e > 0) return temp2analog_remote(celsius, e); #endif return temp2analogi(celsius, n_beta, n_resistor, n_inf); } float analog2temp(int raw, uint8_t e) { #ifdef REPRAPPRO_MULTIMATERIALS if(e > 0) return analog2temp_remote(e); #endif return analog2tempi(raw, n_beta, n_resistor, n_inf); } int temp2analogBed(int celsius) { return temp2analogi(celsius, b_beta, b_resistor, b_inf); } float analog2tempBed(int raw) { return analog2tempi(raw, b_beta, b_resistor, b_inf); } void tp_init() { // Finish init of mult extruder arrays for(int e = 0; e < EXTRUDERS_T; e++) { // populate with the first value maxttemp[e] = maxttemp[0]; #ifdef PIDTEMP temp_iState_min[e] = 0.0; temp_iState_max[e] = Ki_Max / Ki; #endif //PIDTEMP } #if (HEATER_0_PIN > -1) SET_OUTPUT(HEATER_0_PIN); #endif #if (HEATER_1_PIN > -1) SET_OUTPUT(HEATER_1_PIN); #endif #if (HEATER_2_PIN > -1) SET_OUTPUT(HEATER_2_PIN); #endif #if (HEATER_BED_PIN > -1) SET_OUTPUT(HEATER_BED_PIN); #endif #if (FAN_PIN > -1) SET_OUTPUT(FAN_PIN); #endif // Set analog inputs ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; DIDR0 = 0; #ifdef DIDR2 DIDR2 = 0; #endif #if (TEMP_0_PIN > -1) #if TEMP_0_PIN < 8 DIDR0 |= 1 << TEMP_0_PIN; #else DIDR2 |= 1<<(TEMP_0_PIN - 8); #endif #endif #if (TEMP_1_PIN > -1) #if TEMP_1_PIN < 8 DIDR0 |= 1<<TEMP_1_PIN; #else DIDR2 |= 1<<(TEMP_1_PIN - 8); #endif #endif #if (TEMP_2_PIN > -1) #if TEMP_2_PIN < 8 DIDR0 |= 1 << TEMP_2_PIN; #else DIDR2 = 1<<(TEMP_2_PIN - 8); #endif #endif #if (TEMP_BED_PIN > -1) #if TEMP_BED_PIN < 8 DIDR0 |= 1<<TEMP_BED_PIN; #else DIDR2 |= 1<<(TEMP_BED_PIN - 8); #endif #endif // Use timer0 for temperature measurement // Interleave temperature interrupt with millies interrupt OCR0B = 128; TIMSK0 |= (1<<OCIE0B); // Wait for temperature measurement to settle delay(250); #ifdef HEATER_0_MINTEMP minttemp[0] = temp2analog(HEATER_0_MINTEMP, 0); #endif //MINTEMP #ifdef HEATER_0_MAXTEMP maxttemp[0] = temp2analog(HEATER_0_MAXTEMP, 0); #endif //MAXTEMP #if (EXTRUDERS_T > 1) && defined(HEATER_1_MINTEMP) minttemp[1] = temp2analog(HEATER_1_MINTEMP, 1); #endif // MINTEMP 1 #if (EXTRUDERS_T > 1) && defined(HEATER_1_MAXTEMP) maxttemp[1] = temp2analog(HEATER_1_MAXTEMP, 1); #endif //MAXTEMP 1 #if (EXTRUDERS_T > 2) && defined(HEATER_2_MINTEMP) minttemp[2] = temp2analog(HEATER_2_MINTEMP, 2); #endif //MINTEMP 2 #if (EXTRUDERS_T > 2) && defined(HEATER_2_MAXTEMP) maxttemp[2] = temp2analog(HEATER_2_MAXTEMP, 2); #endif //MAXTEMP 2 #ifdef BED_MINTEMP bed_minttemp = temp2analogBed(BED_MINTEMP); #endif //BED_MINTEMP #ifdef BED_MAXTEMP bed_maxttemp = temp2analogBed(BED_MAXTEMP); #endif //BED_MAXTEMP } void disable_heater() { for(int i=0;i<EXTRUDERS_T;i++) setTargetHotend(0,i); setTargetBed(0); #if TEMP_0_PIN > -1 target_raw[0]=0; soft_pwm[0]=0; #if HEATER_0_PIN > -1 WRITE(HEATER_0_PIN,LOW); #endif #endif #if TEMP_1_PIN > -1 target_raw[1]=0; soft_pwm[1]=0; #if HEATER_1_PIN > -1 WRITE(HEATER_1_PIN,LOW); #endif #endif #if TEMP_2_PIN > -1 target_raw[2]=0; soft_pwm[2]=0; #if HEATER_2_PIN > -1 WRITE(HEATER_2_PIN,LOW); #endif #endif #if TEMP_BED_PIN > -1 target_raw_bed=0; #if HEATER_BED_PIN > -1 WRITE(HEATER_BED_PIN,LOW); #endif #endif } void max_temp_error(uint8_t e) { disable_heater(); if(IsStopped() == false) { SERIAL_ERROR_START; SERIAL_ERRORLN((int)e); SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !"); } } void min_temp_error(uint8_t e) { disable_heater(); if(IsStopped() == false) { SERIAL_ERROR_START; SERIAL_ERRORLN((int)e); SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !"); } } void bed_max_temp_error(void) { #if HEATER_BED_PIN > -1 WRITE(HEATER_BED_PIN, 0); #endif if(IsStopped() == false) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!"); } } // Timer 0 is shared with millies ISR(TIMER0_COMPB_vect) { //these variables are only accesible from the ISR, but static, so they don't loose their value static unsigned char temp_count = 0; static unsigned long raw_temp_0_value = 0; static unsigned long raw_temp_1_value = 0; static unsigned long raw_temp_2_value = 0; static unsigned long raw_temp_bed_value = 0; static unsigned char temp_state = 0; static unsigned char pwm_count = 1; static unsigned char soft_pwm_0; static unsigned char soft_pwm_1; static unsigned char soft_pwm_2; if(pwm_count == 0){ soft_pwm_0 = soft_pwm[0]; if(soft_pwm_0 > 0) WRITE(HEATER_0_PIN,1); #ifdef REPRAPPRO_MULTIMATERIALS // Nothing to do here - remote handles it #else #if EXTRUDERS_T > 1 soft_pwm_1 = soft_pwm[1]; if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); #endif #if EXTRUDERS_T > 2 soft_pwm_2 = soft_pwm[2]; if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); #endif #endif } if(soft_pwm_0 <= pwm_count) WRITE(HEATER_0_PIN,0); #ifdef REPRAPPRO_MULTIMATERIALS // Nothing to do here - remote handles it #else #if EXTRUDERS_T > 1 if(soft_pwm_1 <= pwm_count) WRITE(HEATER_1_PIN,0); #endif #if EXTRUDERS_T > 2 if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0); #endif #endif pwm_count++; pwm_count &= 0x7f; switch(temp_state) { case 0: // Prepare TEMP_0 #if (TEMP_0_PIN > -1) #if TEMP_0_PIN > 7 ADCSRB = 1<<MUX5; #else ADCSRB = 0; #endif ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07)); ADCSRA |= 1<<ADSC; // Start conversion #endif #ifdef ULTIPANEL buttons_check(); #endif temp_state = 1; break; case 1: // Measure TEMP_0 #if (TEMP_0_PIN > -1) raw_temp_0_value += ADC; #endif temp_state = 2; break; case 2: // Prepare TEMP_BED #if (TEMP_BED_PIN > -1) #if TEMP_BED_PIN > 7 ADCSRB = 1<<MUX5; #endif ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07)); ADCSRA |= 1<<ADSC; // Start conversion #endif #ifdef ULTIPANEL buttons_check(); #endif temp_state = 3; break; case 3: // Measure TEMP_BED #if (TEMP_BED_PIN > -1) raw_temp_bed_value += ADC; #endif temp_state = 4; break; case 4: // Prepare TEMP_1 #if (TEMP_1_PIN > -1) #if TEMP_1_PIN > 7 ADCSRB = 1<<MUX5; #else ADCSRB = 0; #endif ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07)); ADCSRA |= 1<<ADSC; // Start conversion #endif #ifdef ULTIPANEL buttons_check(); #endif temp_state = 5; break; case 5: // Measure TEMP_1 #if (TEMP_1_PIN > -1) raw_temp_1_value += ADC; #endif temp_state = 6; break; case 6: // Prepare TEMP_2 #if (TEMP_2_PIN > -1) #if TEMP_2_PIN > 7 ADCSRB = 1<<MUX5; #else ADCSRB = 0; #endif ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07)); ADCSRA |= 1<<ADSC; // Start conversion #endif #ifdef ULTIPANEL buttons_check(); #endif temp_state = 7; break; case 7: // Measure TEMP_2 #if (TEMP_2_PIN > -1) raw_temp_2_value += ADC; #endif temp_state = 0; temp_count++; break; // default: // SERIAL_ERROR_START; // SERIAL_ERRORLNPGM("Temp measurement error!"); // break; } if(temp_count >= 16) // 8 ms * 16 = 128ms. { #if defined(HEATER_0_USES_AD595) || defined(HEATER_0_USES_MAX6675) current_raw[0] = raw_temp_0_value; #else current_raw[0] = 16383 - raw_temp_0_value; #endif #if EXTRUDERS_T > 1 #ifdef HEATER_1_USES_AD595 current_raw[1] = raw_temp_1_value; #else current_raw[1] = 16383 - raw_temp_1_value; #endif #endif #if EXTRUDERS_T > 2 #ifdef HEATER_2_USES_AD595 current_raw[2] = raw_temp_2_value; #else current_raw[2] = 16383 - raw_temp_2_value; #endif #endif current_raw_bed = 16383 - raw_temp_bed_value; temp_meas_ready = true; temp_count = 0; raw_temp_0_value = 0; raw_temp_1_value = 0; raw_temp_2_value = 0; raw_temp_bed_value = 0; for(unsigned char e = 0; e < EXTRUDERS_T; e++) { if(current_raw[e] >= maxttemp[e]) { target_raw[e] = 0; max_temp_error(e); #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE { Stop(); } #endif } if(current_raw[e] <= minttemp[e]) { target_raw[e] = 0; min_temp_error(e); #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE { Stop(); } #endif } } #if defined(BED_MAXTEMP) && (HEATER_BED_PIN > -1) if(current_raw_bed >= bed_maxttemp) { target_raw_bed = 0; bed_max_temp_error(); Stop(); } #endif } }