|
1 /* |
|
2 wiring.c - Partial implementation of the Wiring API for the ATmega8. |
|
3 Part of Arduino - http://www.arduino.cc/ |
|
4 |
|
5 Copyright (c) 2005-2006 David A. Mellis |
|
6 |
|
7 This library is free software; you can redistribute it and/or |
|
8 modify it under the terms of the GNU Lesser General Public |
|
9 License as published by the Free Software Foundation; either |
|
10 version 2.1 of the License, or (at your option) any later version. |
|
11 |
|
12 This library is distributed in the hope that it will be useful, |
|
13 but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
15 Lesser General Public License for more details. |
|
16 |
|
17 You should have received a copy of the GNU Lesser General |
|
18 Public License along with this library; if not, write to the |
|
19 Free Software Foundation, Inc., 59 Temple Place, Suite 330, |
|
20 Boston, MA 02111-1307 USA |
|
21 |
|
22 $Id$ |
|
23 */ |
|
24 |
|
25 #include "wiring_private.h" |
|
26 |
|
27 // the prescaler is set so that timer0 ticks every 64 clock cycles, and the |
|
28 // the overflow handler is called every 256 ticks. |
|
29 #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256)) |
|
30 |
|
31 // the whole number of milliseconds per timer0 overflow |
|
32 #define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000) |
|
33 |
|
34 // the fractional number of milliseconds per timer0 overflow. we shift right |
|
35 // by three to fit these numbers into a byte. (for the clock speeds we care |
|
36 // about - 8 and 16 MHz - this doesn't lose precision.) |
|
37 #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3) |
|
38 #define FRACT_MAX (1000 >> 3) |
|
39 |
|
40 volatile unsigned long timer0_overflow_count = 0; |
|
41 volatile unsigned long timer0_millis = 0; |
|
42 static unsigned char timer0_fract = 0; |
|
43 |
|
44 #if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) |
|
45 SIGNAL(TIM0_OVF_vect) |
|
46 #else |
|
47 SIGNAL(TIMER0_OVF_vect) |
|
48 #endif |
|
49 { |
|
50 // copy these to local variables so they can be stored in registers |
|
51 // (volatile variables must be read from memory on every access) |
|
52 unsigned long m = timer0_millis; |
|
53 unsigned char f = timer0_fract; |
|
54 |
|
55 m += MILLIS_INC; |
|
56 f += FRACT_INC; |
|
57 if (f >= FRACT_MAX) { |
|
58 f -= FRACT_MAX; |
|
59 m += 1; |
|
60 } |
|
61 |
|
62 timer0_fract = f; |
|
63 timer0_millis = m; |
|
64 timer0_overflow_count++; |
|
65 } |
|
66 |
|
67 unsigned long millis() |
|
68 { |
|
69 unsigned long m; |
|
70 uint8_t oldSREG = SREG; |
|
71 |
|
72 // disable interrupts while we read timer0_millis or we might get an |
|
73 // inconsistent value (e.g. in the middle of a write to timer0_millis) |
|
74 cli(); |
|
75 m = timer0_millis; |
|
76 SREG = oldSREG; |
|
77 |
|
78 return m; |
|
79 } |
|
80 |
|
81 unsigned long micros() { |
|
82 unsigned long m; |
|
83 uint8_t oldSREG = SREG, t; |
|
84 |
|
85 cli(); |
|
86 m = timer0_overflow_count; |
|
87 #if defined(TCNT0) |
|
88 t = TCNT0; |
|
89 #elif defined(TCNT0L) |
|
90 t = TCNT0L; |
|
91 #else |
|
92 #error TIMER 0 not defined |
|
93 #endif |
|
94 |
|
95 |
|
96 #ifdef TIFR0 |
|
97 if ((TIFR0 & _BV(TOV0)) && (t < 255)) |
|
98 m++; |
|
99 #else |
|
100 if ((TIFR & _BV(TOV0)) && (t < 255)) |
|
101 m++; |
|
102 #endif |
|
103 |
|
104 SREG = oldSREG; |
|
105 |
|
106 return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond()); |
|
107 } |
|
108 |
|
109 void delay(unsigned long ms) |
|
110 { |
|
111 uint16_t start = (uint16_t)micros(); |
|
112 |
|
113 while (ms > 0) { |
|
114 if (((uint16_t)micros() - start) >= 1000) { |
|
115 ms--; |
|
116 start += 1000; |
|
117 } |
|
118 } |
|
119 } |
|
120 |
|
121 /* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */ |
|
122 void delayMicroseconds(unsigned int us) |
|
123 { |
|
124 // calling avrlib's delay_us() function with low values (e.g. 1 or |
|
125 // 2 microseconds) gives delays longer than desired. |
|
126 //delay_us(us); |
|
127 #if F_CPU >= 20000000L |
|
128 // for the 20 MHz clock on rare Arduino boards |
|
129 |
|
130 // for a one-microsecond delay, simply wait 2 cycle and return. The overhead |
|
131 // of the function call yields a delay of exactly a one microsecond. |
|
132 __asm__ __volatile__ ( |
|
133 "nop" "\n\t" |
|
134 "nop"); //just waiting 2 cycle |
|
135 if (--us == 0) |
|
136 return; |
|
137 |
|
138 // the following loop takes a 1/5 of a microsecond (4 cycles) |
|
139 // per iteration, so execute it five times for each microsecond of |
|
140 // delay requested. |
|
141 us = (us<<2) + us; // x5 us |
|
142 |
|
143 // account for the time taken in the preceeding commands. |
|
144 us -= 2; |
|
145 |
|
146 #elif F_CPU >= 16000000L |
|
147 // for the 16 MHz clock on most Arduino boards |
|
148 |
|
149 // for a one-microsecond delay, simply return. the overhead |
|
150 // of the function call yields a delay of approximately 1 1/8 us. |
|
151 if (--us == 0) |
|
152 return; |
|
153 |
|
154 // the following loop takes a quarter of a microsecond (4 cycles) |
|
155 // per iteration, so execute it four times for each microsecond of |
|
156 // delay requested. |
|
157 us <<= 2; |
|
158 |
|
159 // account for the time taken in the preceeding commands. |
|
160 us -= 2; |
|
161 #else |
|
162 // for the 8 MHz internal clock on the ATmega168 |
|
163 |
|
164 // for a one- or two-microsecond delay, simply return. the overhead of |
|
165 // the function calls takes more than two microseconds. can't just |
|
166 // subtract two, since us is unsigned; we'd overflow. |
|
167 if (--us == 0) |
|
168 return; |
|
169 if (--us == 0) |
|
170 return; |
|
171 |
|
172 // the following loop takes half of a microsecond (4 cycles) |
|
173 // per iteration, so execute it twice for each microsecond of |
|
174 // delay requested. |
|
175 us <<= 1; |
|
176 |
|
177 // partially compensate for the time taken by the preceeding commands. |
|
178 // we can't subtract any more than this or we'd overflow w/ small delays. |
|
179 us--; |
|
180 #endif |
|
181 |
|
182 // busy wait |
|
183 __asm__ __volatile__ ( |
|
184 "1: sbiw %0,1" "\n\t" // 2 cycles |
|
185 "brne 1b" : "=w" (us) : "0" (us) // 2 cycles |
|
186 ); |
|
187 } |
|
188 |
|
189 void init() |
|
190 { |
|
191 // this needs to be called before setup() or some functions won't |
|
192 // work there |
|
193 sei(); |
|
194 |
|
195 // on the ATmega168, timer 0 is also used for fast hardware pwm |
|
196 // (using phase-correct PWM would mean that timer 0 overflowed half as often |
|
197 // resulting in different millis() behavior on the ATmega8 and ATmega168) |
|
198 #if defined(TCCR0A) && defined(WGM01) |
|
199 sbi(TCCR0A, WGM01); |
|
200 sbi(TCCR0A, WGM00); |
|
201 #endif |
|
202 |
|
203 // set timer 0 prescale factor to 64 |
|
204 #if defined(__AVR_ATmega128__) |
|
205 // CPU specific: different values for the ATmega128 |
|
206 sbi(TCCR0, CS02); |
|
207 #elif defined(TCCR0) && defined(CS01) && defined(CS00) |
|
208 // this combination is for the standard atmega8 |
|
209 sbi(TCCR0, CS01); |
|
210 sbi(TCCR0, CS00); |
|
211 #elif defined(TCCR0B) && defined(CS01) && defined(CS00) |
|
212 // this combination is for the standard 168/328/1280/2560 |
|
213 sbi(TCCR0B, CS01); |
|
214 sbi(TCCR0B, CS00); |
|
215 #elif defined(TCCR0A) && defined(CS01) && defined(CS00) |
|
216 // this combination is for the __AVR_ATmega645__ series |
|
217 sbi(TCCR0A, CS01); |
|
218 sbi(TCCR0A, CS00); |
|
219 #else |
|
220 #error Timer 0 prescale factor 64 not set correctly |
|
221 #endif |
|
222 |
|
223 // enable timer 0 overflow interrupt |
|
224 #if defined(TIMSK) && defined(TOIE0) |
|
225 sbi(TIMSK, TOIE0); |
|
226 #elif defined(TIMSK0) && defined(TOIE0) |
|
227 sbi(TIMSK0, TOIE0); |
|
228 #else |
|
229 #error Timer 0 overflow interrupt not set correctly |
|
230 #endif |
|
231 |
|
232 // timers 1 and 2 are used for phase-correct hardware pwm |
|
233 // this is better for motors as it ensures an even waveform |
|
234 // note, however, that fast pwm mode can achieve a frequency of up |
|
235 // 8 MHz (with a 16 MHz clock) at 50% duty cycle |
|
236 |
|
237 #if defined(TCCR1B) && defined(CS11) && defined(CS10) |
|
238 TCCR1B = 0; |
|
239 |
|
240 // set timer 1 prescale factor to 64 |
|
241 sbi(TCCR1B, CS11); |
|
242 #if F_CPU >= 8000000L |
|
243 sbi(TCCR1B, CS10); |
|
244 #endif |
|
245 #elif defined(TCCR1) && defined(CS11) && defined(CS10) |
|
246 sbi(TCCR1, CS11); |
|
247 #if F_CPU >= 8000000L |
|
248 sbi(TCCR1, CS10); |
|
249 #endif |
|
250 #endif |
|
251 // put timer 1 in 8-bit phase correct pwm mode |
|
252 #if defined(TCCR1A) && defined(WGM10) |
|
253 sbi(TCCR1A, WGM10); |
|
254 #elif defined(TCCR1) |
|
255 #warning this needs to be finished |
|
256 #endif |
|
257 |
|
258 // set timer 2 prescale factor to 64 |
|
259 #if defined(TCCR2) && defined(CS22) |
|
260 sbi(TCCR2, CS22); |
|
261 #elif defined(TCCR2B) && defined(CS22) |
|
262 sbi(TCCR2B, CS22); |
|
263 #else |
|
264 #warning Timer 2 not finished (may not be present on this CPU) |
|
265 #endif |
|
266 |
|
267 // configure timer 2 for phase correct pwm (8-bit) |
|
268 #if defined(TCCR2) && defined(WGM20) |
|
269 sbi(TCCR2, WGM20); |
|
270 #elif defined(TCCR2A) && defined(WGM20) |
|
271 sbi(TCCR2A, WGM20); |
|
272 #else |
|
273 #warning Timer 2 not finished (may not be present on this CPU) |
|
274 #endif |
|
275 |
|
276 #if defined(TCCR3B) && defined(CS31) && defined(WGM30) |
|
277 sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64 |
|
278 sbi(TCCR3B, CS30); |
|
279 sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode |
|
280 #endif |
|
281 |
|
282 #if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */ |
|
283 sbi(TCCR4B, CS42); // set timer4 prescale factor to 64 |
|
284 sbi(TCCR4B, CS41); |
|
285 sbi(TCCR4B, CS40); |
|
286 sbi(TCCR4D, WGM40); // put timer 4 in phase- and frequency-correct PWM mode |
|
287 sbi(TCCR4A, PWM4A); // enable PWM mode for comparator OCR4A |
|
288 sbi(TCCR4C, PWM4D); // enable PWM mode for comparator OCR4D |
|
289 #else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */ |
|
290 #if defined(TCCR4B) && defined(CS41) && defined(WGM40) |
|
291 sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64 |
|
292 sbi(TCCR4B, CS40); |
|
293 sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode |
|
294 #endif |
|
295 #endif /* end timer4 block for ATMEGA1280/2560 and similar */ |
|
296 |
|
297 #if defined(TCCR5B) && defined(CS51) && defined(WGM50) |
|
298 sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64 |
|
299 sbi(TCCR5B, CS50); |
|
300 sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode |
|
301 #endif |
|
302 |
|
303 #if defined(ADCSRA) |
|
304 // set a2d prescale factor to 128 |
|
305 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range. |
|
306 // XXX: this will not work properly for other clock speeds, and |
|
307 // this code should use F_CPU to determine the prescale factor. |
|
308 sbi(ADCSRA, ADPS2); |
|
309 sbi(ADCSRA, ADPS1); |
|
310 sbi(ADCSRA, ADPS0); |
|
311 |
|
312 // enable a2d conversions |
|
313 sbi(ADCSRA, ADEN); |
|
314 #endif |
|
315 |
|
316 // the bootloader connects pins 0 and 1 to the USART; disconnect them |
|
317 // here so they can be used as normal digital i/o; they will be |
|
318 // reconnected in Serial.begin() |
|
319 #if defined(UCSRB) |
|
320 UCSRB = 0; |
|
321 #elif defined(UCSR0B) |
|
322 UCSR0B = 0; |
|
323 #endif |
|
324 } |