|
1 /* |
|
2 stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors |
|
3 Part of Grbl |
|
4 |
|
5 Copyright (c) 2009-2011 Simen Svale Skogsrud |
|
6 |
|
7 Grbl is free software: you can redistribute it and/or modify |
|
8 it under the terms of the GNU General Public License as published by |
|
9 the Free Software Foundation, either version 3 of the License, or |
|
10 (at your option) any later version. |
|
11 |
|
12 Grbl is distributed in the hope that it will be useful, |
|
13 but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
15 GNU General Public License for more details. |
|
16 |
|
17 You should have received a copy of the GNU General Public License |
|
18 along with Grbl. If not, see <http://www.gnu.org/licenses/>. |
|
19 */ |
|
20 |
|
21 #ifndef stepper_h |
|
22 #define stepper_h |
|
23 |
|
24 #include "planner.h" |
|
25 #include "slave_comms.h" |
|
26 |
|
27 #ifdef REPRAPPRO_MULTIMATERIALS |
|
28 |
|
29 #define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { slaveRemoteStep(2, v); } else { if(current_block->active_extruder == 1) { slaveRemoteStep(1, v); } else { WRITE(E0_STEP_PIN, v); }}} |
|
30 #define NORM_E_DIR() { if(current_block->active_extruder == 2) { slaveRemoteDir(2, true); } else { if(current_block->active_extruder == 1) { slaveRemoteDir(1, true); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}} |
|
31 #define REV_E_DIR() { if(current_block->active_extruder == 2) { slaveRemoteDir(2, false); } else { if(current_block->active_extruder == 1) { slaveRemoteDir(1, false); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}} |
|
32 |
|
33 |
|
34 /* |
|
35 inline void WRITE_E_STEP(int8_t v) |
|
36 { |
|
37 if(current_block->active_extruder == 2) |
|
38 { |
|
39 slaveRemoteStep(2, v); //E2_STEP_PIN, v); |
|
40 } else |
|
41 { |
|
42 if(current_block->active_extruder == 1) |
|
43 { |
|
44 slaveRemoteStep(1, v); //E1_STEP_PIN, v); |
|
45 } else |
|
46 { |
|
47 WRITE(E0_STEP_PIN, v); |
|
48 } |
|
49 } |
|
50 } |
|
51 |
|
52 inline void NORM_E_DIR() |
|
53 { |
|
54 if(current_block->active_extruder == 2) |
|
55 { |
|
56 slaveRemoteDir(2, true); //!E2_DIR_PIN, INVERT_E2_DIR); |
|
57 } else |
|
58 { |
|
59 if(current_block->active_extruder == 1) |
|
60 { |
|
61 slaveRemoteDir(1, true); //!E1_DIR_PIN, INVERT_E1_DIR); |
|
62 } else |
|
63 { |
|
64 WRITE(E0_DIR_PIN, !INVERT_E0_DIR); |
|
65 } |
|
66 } |
|
67 } |
|
68 |
|
69 inline void REV_E_DIR() |
|
70 { |
|
71 if(current_block->active_extruder == 2) |
|
72 { |
|
73 slaveRemoteDir(2, false); //E2_DIR_PIN, INVERT_E2_DIR); |
|
74 } else |
|
75 { |
|
76 if(current_block->active_extruder == 1) |
|
77 { |
|
78 slaveRemoteDir(1, false); //E1_DIR_PIN, INVERT_E1_DIR); |
|
79 } else |
|
80 { |
|
81 WRITE(E0_DIR_PIN, INVERT_E0_DIR); |
|
82 } |
|
83 } |
|
84 } |
|
85 */ |
|
86 #else |
|
87 |
|
88 #if EXTRUDERS > 2 |
|
89 #define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { WRITE(E2_STEP_PIN, v); } else { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}} |
|
90 #define NORM_E_DIR() { if(current_block->active_extruder == 2) { WRITE(!E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(!E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}} |
|
91 #define REV_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}} |
|
92 #elif EXTRUDERS > 1 |
|
93 #define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }} |
|
94 #define NORM_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }} |
|
95 #define REV_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }} |
|
96 #else |
|
97 #define WRITE_E_STEP(v) WRITE(E0_STEP_PIN, v) |
|
98 #define NORM_E_DIR() WRITE(E0_DIR_PIN, !INVERT_E0_DIR) |
|
99 #define REV_E_DIR() WRITE(E0_DIR_PIN, INVERT_E0_DIR) |
|
100 #endif |
|
101 |
|
102 #endif |
|
103 |
|
104 |
|
105 |
|
106 // Initialize and start the stepper motor subsystem |
|
107 void st_init(); |
|
108 |
|
109 // Block until all buffered steps are executed |
|
110 void st_synchronize(); |
|
111 |
|
112 // Set current position in steps |
|
113 void st_set_position(const long &x, const long &y, const long &z, const long &e); |
|
114 void st_set_e_position(const long &e); |
|
115 |
|
116 // Get current position in steps |
|
117 long st_get_position(uint8_t axis); |
|
118 |
|
119 // The stepper subsystem goes to sleep when it runs out of things to execute. Call this |
|
120 // to notify the subsystem that it is time to go to work. |
|
121 void st_wake_up(); |
|
122 |
|
123 |
|
124 void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered |
|
125 void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops(); |
|
126 |
|
127 void enable_endstops(bool check); // Enable/disable endstop checking |
|
128 |
|
129 void checkStepperErrors(); //Print errors detected by the stepper |
|
130 |
|
131 void finishAndDisableSteppers(); |
|
132 |
|
133 extern block_t *current_block; // A pointer to the block currently being traced |
|
134 extern volatile long endstops_trigsteps[]; |
|
135 extern volatile bool endstop_z_hit; |
|
136 extern bool old_z_min_endstop; |
|
137 |
|
138 void quickStop(); |
|
139 #endif |